Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Boron neutron capture therapy (BNCT) is a re-emerging technique for selectively killing tumor cells. Briefly, the mechanism can be described as follows: after the uptake of boron into cells, the thermal neutrons trigger the fission of the boron atoms, releasing the α-particles and recoiling lithium particles and high-energy photons that damage the cells. We performed a detailed study of the reactor dosimetry, cellular dose assessment, and radiobiological effects induced by BNCT in glioblastoma (GBM) cells. At maximum reactor power, neutron fluence rates were ϕ0 = 6.6 × 107 cm−2 s−1 (thermal) and θ = 2.4 × 104 cm−2 s−1 with a photon dose rate of 150 mGy·h−1. These values agreed with simulations to within 85% (thermal neutrons), 78% (epithermal neutrons), and 95% (photons), thereby validating the MCNPX model. The GEANT4 simulations, based on a realistic cell model and measured boron concentrations, showed that >95% of the dose in cells was due to the BNC reaction. Carboranylmethylbenzo[b]acridone (CMBA) is among the different proposed boron delivery agents that has shown promising properties due to its lower toxicity and important cellular uptake in U87 glioblastoma cells. In particular, the results obtained for CBMA reinforce radiobiological effects demonstrating that damage is mostly induced by the incorporated boron with negligible contribution from the culture medium and adjacent cells, evidencing extranuclear cell radiosensitivity.

Details

Title
Exploring the Physical and Biological Aspects of BNCT with a Carboranylmethylbenzo[b]acridone Compound in U87 Glioblastoma Cells
Author
Belchior, Ana 1 ; Fernandes, Ana 2 ; Lamotte, Maxime 1   VIAFID ORCID Logo  ; Andreia Filipa Ferreira da Silva 3 ; Raquel S G R Seixas 3 ; Silva, Artur M S 3   VIAFID ORCID Logo  ; Marques, Fernanda 2   VIAFID ORCID Logo 

 Centre for Nuclear Sciences and Technologies, Instituto Superior Técnico, Lisbon University, Nuclear and Technological Campus, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal 
 Centre for Nuclear Sciences and Technologies, Instituto Superior Técnico, Lisbon University, Nuclear and Technological Campus, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Lisbon University, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal 
 Department of Chemistry QOPNA, Aveiro University, 3810-193 Aveiro, Portugal 
First page
14929
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748550071
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.