Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, WO3 nanostructures were synthesized with different complexing agents (0.05 M H2O2 and 0.1 M citric acid) and annealing conditions (400 °C, 500 °C and 600 °C) to obtain optimal WO3 nanostructures to use them as a photoanode in the photoelectrochemical (PEC) degradation of an endocrine disruptor chemical. These nanostructures were studied morphologically by a field emission scanning electron microscope. X-ray photoelectron spectroscopy was performed to provide information of the electronic states of the nanostructures. The crystallinity of the samples was observed by a confocal Raman laser microscope and X-ray diffraction. Furthermore, photoelectrochemical measurements (photostability, photoelectrochemical impedance spectroscopy, Mott–Schottky and water-splitting test) were also performed using a solar simulator with AM 1.5 conditions at 100 mW·cm−2. Once the optimal nanostructure was obtained (citric acid 0.01 M at an annealing temperature of 600 °C), the PEC degradation of methylparaben (CO 10 ppm) was carried out. It was followed by ultra-high-performance liquid chromatography and mass spectrometry, which allowed to obtain the concentration of the contaminant during degradation and the identification of degradation intermediates. The optimized nanostructure was proved to be an efficient photocatalyst since the degradation of methylparaben was performed in less than 4 h and the kinetic coefficient of degradation was 0.02 min−1.

Details

Title
Degradation of Methylparaben Using Optimal WO3 Nanostructures: Influence of the Annealing Conditions and Complexing Agent
Author
Cifre-Herrando, M  VIAFID ORCID Logo  ; Roselló-Márquez, G; García-García, D M; García-Antón, J
First page
4286
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748553254
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.