Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the continuous improvement in material life, people are paying more and more attention to air quality; therefore, it is critical to design efficient and stable gas sensor devices. In this work, a flowery WSe2 nanostructure and its nanocomposite (Au@WSe2) decorated with Au nanoparticles were fabricated by the hydrothermal method. The performance of a resistive sensor with flowery WSe2 and Au@WSe2 sensors was evaluated by detecting volatile organic compounds such as ethanol, isoamylol, n-butyl alcohol, isopropanol, isobutanol and n-propanol. The results show that Au-nanoparticle-decorated flowery WSe2 can decrease the optimal working temperature from 215 °C to 205 °C and significantly enhance the response of flowery WSe2. The response values to isoamylol are the highest (as high as 44.5) at a low gas concentration (100 ppm), while the response values to ethanol are the highest (as high as 178.5) at a high gas concentration (1000 ppm) among the six different alcohols. Moreover, the response is steady and repeatable. The results demonstrate that the Au@WSe2 substrate has good responsiveness and selectivity, which makes it a promising candidate for gas detection.

Details

Title
Enhanced Gas Sensitivity of Au-Decorated Flowery WSe2 Nanostructures
Author
Zhang, Xia 1 ; Tan, Qiuhong 2 ; Wang, Qianjin 2 ; Yang, Peizhi 3 ; Liu, Yingkai 2 

 College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China 
 College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China; Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China 
 Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China 
First page
4221
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748555166
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.