Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Perfluorosulfonic acid Nafion membranes are widely used as an electrolyte in electrolysis processes and in fuel cells. Changing the preparation and pretreatment conditions of Nafion membranes allows for the optimization of their properties. In this work, a Nafion-NMP membrane with a higher conductivity than the commercial Nafion® 212 membrane (11.5 and 8.7 mS∙cm−1 in contact with water at t = 30 °C) and a comparable hydrogen permeability was obtained by casting from a Nafion dispersion in N-methyl-2-pyrrolidone. Since the ion-exchange capacity and the water uptake of these membranes are similar, it can be assumed that the increase in conductivity is the result of optimizing the Nafion-NMP microstructure by improving the connectivity of the pores and channels system. This leads to a 27% increase in the capacity of the membrane electrode assembly with the Nafion-NMP membrane compared to the Nafion® 212 membrane. Thus, the method of obtaining a Nafion membrane has a great influence on its properties and performance of fuel cells based on them.

Details

Title
On the Properties of Nafion Membranes Recast from Dispersion in N-Methyl-2-Pyrrolidone
Author
Ekaterina Yu Safronova 1 ; Daria Yu Voropaeva 1   VIAFID ORCID Logo  ; Lysova, Anna A 1   VIAFID ORCID Logo  ; Korchagin, Oleg V 2 ; Bogdanovskaya, Vera A 2 ; Yaroslavtsev, Andrey B 1   VIAFID ORCID Logo 

 N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 
 A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia 
First page
5275
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748556122
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.