Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of machine learning (ML) techniques in affective computing applications focuses on improving the user experience in emotion recognition. The collection of input data (e.g., physiological signals), together with expert annotations are part of the established standard supervised learning methodology used to train human emotion recognition models. However, these models generally require large amounts of labeled data, which is expensive and impractical in the healthcare context, in which data annotation requires even more expert knowledge. To address this problem, this paper explores the use of the self-supervised learning (SSL) paradigm in the development of emotion recognition methods. This approach makes it possible to learn representations directly from unlabeled signals and subsequently use them to classify affective states. This paper presents the key concepts of emotions and how SSL methods can be applied to recognize affective states. We experimentally analyze and compare self-supervised and fully supervised training of a convolutional neural network designed to recognize emotions. The experimental results using three emotion datasets demonstrate that self-supervised representations can learn widely useful features that improve data efficiency, are widely transferable, are competitive when compared to their fully supervised counterparts, and do not require the data to be labeled for learning.

Details

Title
Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals
Author
Montero Quispe, Kevin G  VIAFID ORCID Logo  ; Utyiama, Daniel M S; dos Santos, Eulanda M  VIAFID ORCID Logo  ; Horácio A B F Oliveira  VIAFID ORCID Logo  ; Souto, Eduardo J P  VIAFID ORCID Logo 
First page
9102
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748560676
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.