Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Indian Himalayan region is experiencing frequent hazards and disasters related to permafrost. However, research on permafrost in this region has received very little or no attention. Therefore, it is important to have knowledge about the spatial distribution and state of permafrost in the Indian Himalayas. Modern remote sensing techniques, with the help of a geographic information system (GIS), can assess permafrost at high altitudes, largely over inaccessible mountainous terrains in the Himalayas. To assess the spatial distribution of permafrost in the Alaknanda Valley of the Chamoli district of Uttarakhand state, 198 rock glaciers were mapped (183 active and 15 relict) using high-resolution satellite data available in the Google Earth database. A logistic regression model (LRM) was used to identify a relationship between the presence of permafrost at the rock glacier sites and the predictor variables, i.e., the mean annual air temperature (MAAT), the potential incoming solar radiation (PISR) during the snow-free months, and the aspect near the margins of rock glaciers. Two other LRMs were also developed using moderate-resolution imaging spectroradiometer (MODIS)-derived land surface temperature (LST) and snow cover products. The MAAT-based model produced the best results, with a classification accuracy of 92.4%, followed by the snow-cover-based model (91.9%), with the LST-based model being the least accurate (82.4%). All three models were developed to compare their accuracy in predicting permafrost distribution. The results from the MAAT-based model were validated with the global permafrost zonation index (PZI) map, which showed no significant differences. However, the predicted model exhibited an underestimation of the area underlain by permafrost in the region compared to the PZI. Identifying the spatial distribution of permafrost will help us to better understand the impact of climate change on permafrost and its related hazards and provide necessary information to decision makers to mitigate permafrost-related disasters in the high mountain regions.

Details

Title
Modeling Permafrost Distribution Using Geoinformatics in the Alaknanda Valley, Uttarakhand, India
Author
Pandey, Arvind Chandra 1 ; Ghosh, Tirthankar 1   VIAFID ORCID Logo  ; Parida, Bikash Ranjan 1   VIAFID ORCID Logo  ; Chandra Shekhar Dwivedi 1 ; Reet Kamal Tiwari 2   VIAFID ORCID Logo 

 Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi 835222, India 
 Department of Civil Engineering, Indian Institute of Technology Ropar, Ropar 140001, India 
First page
15731
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748564581
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.