Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Knowledge tracing (KT), aiming to model learners’ mastery of a concept based on their historical learning records, has received extensive attention due to its great potential in realizing personalized learning in intelligent tutoring systems. However, most existing KT methods focus on a single aspect of knowledge or learner, not paying careful attention to the coupling influence of knowledge and learner characteristics. To fill this gap, in this paper, we explore a new paradigm for the KT task by exploiting the coupling influence of knowledge and learner. A novel model called Dual-Centric Knowledge Tracing (DCKT) is proposed to model knowledge states through two joint tasks of knowledge modeling and learner modeling. In particular, we first generate concept embeddings in abundant knowledge structure information via a pretext task (knowledge-centric): unsupervised graph representation learning. Then, we deeply measure learners’ prior knowledge the knowledge-enhanced representations and three predefined educational priors for discriminative feature enhancement. Furthermore, we design a forgetting-fusion transformer (learner-centric) to simulate the declining trend of learners’ knowledge proficiency over time, representing the common forgetting phenomenon. Extensive experiments were conducted on four public datasets, and the results demonstrate that DCKT could achieve better knowledge tracing results over all datasets via a dual-centric modeling process. Additionally, DCKT can learn meaningful question embeddings automatically without manual annotations. Our work indicates a potential future research direction for personalized learner modeling, which is of both accuracy and high interpretability.

Details

Title
DCKT: A Novel Dual-Centric Learning Model for Knowledge Tracing
Author
Chen, Yixuan; Wang, Shuang; Jiang, Fan; Tu, Yaxin; Huang, Qionghao
First page
16307
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748568735
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.