Abstract

Spatially resolved transcriptomics provides the opportunity to investigate the gene expression profiles and the spatial context of cells in naive state, but at low transcript detection sensitivity or with limited gene throughput. Comprehensive annotating of cell types in spatially resolved transcriptomics to understand biological processes at the single cell level remains challenging. Here we propose Spatial-ID, a supervision-based cell typing method, that combines the existing knowledge of reference single-cell RNA-seq data and the spatial information of spatially resolved transcriptomics data. We present a series of benchmarking analyses on publicly available spatially resolved transcriptomics datasets, that demonstrate the superiority of Spatial-ID compared with state-of-the-art methods. Besides, we apply Spatial-ID on a self-collected mouse brain hemisphere dataset measured by Stereo-seq, that shows the scalability of Spatial-ID to three-dimensional large field tissues with subcellular spatial resolution.

Comprehensive annotating of cell types in spatially resolved transcriptomics to understand biological processes at the single cell level remains challenging. Here the authors introduce Spatial-ID, a supervision-based cell typing method, that combines the existing knowledge of reference single-cell RNA-seq data and the spatial information of spatially resolved transcriptomics data.

Details

Title
Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding
Author
Shen, Rongbo 1   VIAFID ORCID Logo  ; Liu, Lin 2 ; Wu, Zihan 1   VIAFID ORCID Logo  ; Zhang, Ying 2 ; Yuan, Zhiyuan 3   VIAFID ORCID Logo  ; Guo, Junfu 2   VIAFID ORCID Logo  ; Yang, Fan 1 ; Zhang, Chao 2 ; Chen, Bichao 2   VIAFID ORCID Logo  ; Feng, Wanwan 4 ; Liu, Chao 2 ; Guo, Jing 2 ; Fan, Guozhen 2 ; Zhang, Yong 5 ; Li, Yuxiang 5 ; Xu, Xun 6   VIAFID ORCID Logo  ; Yao, Jianhua 1 

 Tencent AI Lab, Shenzhen, China (GRID:grid.471330.2) (ISNI:0000 0004 6359 9743) 
 BGI-Shenzhen, Shenzhen, China (GRID:grid.21155.32) (ISNI:0000 0001 2034 1839) 
 Tencent AI Lab, Shenzhen, China (GRID:grid.471330.2) (ISNI:0000 0004 6359 9743); Fudan University, Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai, China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443) 
 Tencent AI Lab, Shenzhen, China (GRID:grid.471330.2) (ISNI:0000 0004 6359 9743); University of Chinese Academy of Sciences, Chinese Academy of Sciences, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Shanghai, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
 BGI-Shenzhen, Shenzhen, China (GRID:grid.21155.32) (ISNI:0000 0001 2034 1839); Guangdong Bigdata Engineering Technology Research Center for Life Sciences, Shenzhen, China (GRID:grid.21155.32) 
 BGI-Shenzhen, Shenzhen, China (GRID:grid.21155.32) (ISNI:0000 0001 2034 1839); Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China (GRID:grid.21155.32) (ISNI:0000 0001 2034 1839) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748910070
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.