Abstract

Van der Waals (vdW) magnet heterostructures have emerged as new platforms to explore exotic magnetic orders and quantum phenomena. Here, we study heterostructures of layered antiferromagnets, CrI3 and CrCl3, with perpendicular and in-plane magnetic anisotropy, respectively. Using magneto-optical Kerr effect microscopy, we demonstrate out-of-plane magnetic order in the CrCl3 layer proximal to CrI3, with ferromagnetic interfacial coupling between the two. Such an interlayer exchange field leads to higher critical temperature than that of either CrI3 or CrCl3 alone. We further demonstrate significant electric-field control of the coercivity, attributed to the naturally broken structural inversion symmetry of the heterostructure allowing unprecedented direct coupling between electric field and interfacial magnetism. These findings illustrate the opportunity to explore exotic magnetic phases and engineer spintronic devices in vdW heterostructures.

One particularly useful feature of van der Waals materials is the ability to combine layers of different materials into a single heterostructure, which can have superior properties than any of the constituent materials alone. Here, Cheng et al. combine two interlayer-antiferromagnetic chromium trihalides, CrI3 and CrCl3 in close proximity, and demonstrate ferromagnetic coupling between them.

Details

Title
Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures
Author
Cheng, Guanghui 1 ; Rahman, Mohammad Mushfiqur 2 ; He, Zhiping 3 ; Allcca, Andres Llacsahuanga 4 ; Rustagi, Avinash 5 ; Stampe, Kirstine Aggerbeck 6 ; Zhu, Yanglin 7 ; Yan, Shaohua 8 ; Tian, Shangjie 8   VIAFID ORCID Logo  ; Mao, Zhiqiang 7   VIAFID ORCID Logo  ; Lei, Hechang 8   VIAFID ORCID Logo  ; Watanabe, Kenji 9   VIAFID ORCID Logo  ; Taniguchi, Takashi 10   VIAFID ORCID Logo  ; Upadhyaya, Pramey 11 ; Chen, Yong P. 12 

 Tohoku University, Advanced Institute for Materials Research (WPI-AIMR), Sendai, Japan (GRID:grid.69566.3a) (ISNI:0000 0001 2248 6943); Purdue University, Department of Physics and Astronomy, and Birck Nanotechnology Center, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Purdue Quantum Science and Engineering Institute, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); University of Science and Technology of China, Department of Physics, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639) 
 Purdue University, Elmore family school of electrical and computer engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197) 
 University of Science and Technology of China, Department of Physics, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639) 
 Purdue University, Department of Physics and Astronomy, and Birck Nanotechnology Center, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Purdue Quantum Science and Engineering Institute, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Quantum Science Center, Oak Ridge, USA (GRID:grid.512115.3) 
 Purdue University, Elmore family school of electrical and computer engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Intel Corp., Hillsboro, USA (GRID:grid.419318.6) (ISNI:0000 0004 1217 7655) 
 Aarhus University, Institute of Physics and Astronomy and Villum Centers for Dirac Materials and for Hybrid Quantum Materials, Aarhus-C, Denmark (GRID:grid.7048.b) (ISNI:0000 0001 1956 2722) 
 Pennsylvania State University, Department of Physics, University Park, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281) 
 Renmin University of China, Laboratory for Neutron Scattering, and Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Beijing, China (GRID:grid.24539.39) (ISNI:0000 0004 0368 8103) 
 National Institute for Materials Science, Research Center for Functional Materials, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880) 
10  National Institute for Materials Science, International Center for Materials Nanoarchitectonics, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880) 
11  Purdue University, Purdue Quantum Science and Engineering Institute, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Elmore family school of electrical and computer engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Quantum Science Center, Oak Ridge, USA (GRID:grid.512115.3) 
12  Tohoku University, Advanced Institute for Materials Research (WPI-AIMR), Sendai, Japan (GRID:grid.69566.3a) (ISNI:0000 0001 2248 6943); Purdue University, Department of Physics and Astronomy, and Birck Nanotechnology Center, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Purdue Quantum Science and Engineering Institute, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Elmore family school of electrical and computer engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Quantum Science Center, Oak Ridge, USA (GRID:grid.512115.3); Aarhus University, Institute of Physics and Astronomy and Villum Centers for Dirac Materials and for Hybrid Quantum Materials, Aarhus-C, Denmark (GRID:grid.7048.b) (ISNI:0000 0001 1956 2722) 
Pages
7348
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2754659798
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.