It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We describe a novel technique, based on image compression and machine learning, for transverse phase space tomography in two degrees of freedom in an accelerator beamline. The technique has been used in the CLARA accelerator test facility at Daresbury Laboratory: results from the machine learning method are compared with those from a conventional tomography algorithm (algebraic reconstruction) and applied to the same data. The use of machine learning allows reconstruction of the 4D phase space distribution of the beam to be carried out much more rapidly than using conventional tomography algorithms and also enables the use of image compression to reduce significantly the size of the data sets involved in the analysis. Results from the machine learning technique are at least as good as those from the algebraic reconstruction tomography in characterizing the beam behavior, in terms of the variation of the beam size in response to variation of the quadrupole strengths.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer