It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Coronary heart disease (CHD) and type 2 diabetes (T2D) are two complex diseases with complex interrelationships. However, the genetic architecture of the two diseases is often studied independently by the individual single-nucleotide polymorphism (SNP) approach. Here, we presented a genotypic-phenotypic framework for deciphering the genetic architecture underlying the disease patterns of CHD and T2D.
Method
A data-driven SNP-set approach was performed in a genome-wide association study consisting of subpopulations with different disease patterns of CHD and T2D (comorbidity, CHD without T2D, T2D without CHD and all none). We applied nonsmooth nonnegative matrix factorization (nsNMF) clustering to generate SNP sets interacting the information of SNP and subject. Relationships between SNP sets and phenotype sets harboring different disease patterns were then assessed, and we further co-clustered the SNP sets into a genetic network to topologically elucidate the genetic architecture composed of SNP sets.
Results
We identified 23 non-identical SNP sets with significant association with CHD or T2D (SNP-set based association test, P < 3.70 × \({10}^{-4}\)). Among them, disease patterns involving CHD and T2D were related to distinct SNP sets (Hypergeometric test, P < 2.17 × \({10}^{-3}\)). Accordingly, numerous genes (e.g., KLKs, GRM8, SHANK2) and pathways (e.g., fatty acid metabolism) were diversely implicated in different subtypes and related pathophysiological processes. Finally, we showed that the genetic architecture for disease patterns of CHD and T2D was composed of disjoint genetic networks (heterogeneity), with common genes contributing to it (pleiotropy).
Conclusion
The SNP-set approach deciphered the complexity of both genotype and phenotype as well as their complex relationships. Different disease patterns of CHD and T2D share distinct genetic architectures, for which lipid metabolism related to fibrosis may be an atherogenic pathway that is specifically activated by diabetes. Our findings provide new insights for exploring new biological pathways.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer