It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The predominant oncologist-led model in many countries is unsustainable to meet the needs of a growing cohort of breast cancer survivors (BCS). Despite available alternative models, adoption rates have been poor. To help BCS navigate survivorship care, we aimed to systematically develop a decision aid (DA) to guide their choice of follow-up care model and evaluate its acceptability and usability among BCS and health care providers (HCPs).
Methods
We recruited BCS aged ≥ 21 years who have completed primary treatment and understand English. BCS receiving palliative care or with cognitive impairment were excluded. HCPs who routinely discussed post-treatment care with BCS were purposively sampled based on disciplines. Each participant reviewed the DA during a semi-structured interview using the ‘think aloud’ approach and completed an acceptability questionnaire. Descriptive statistics and directed content analysis were used.
Results
We conducted three rounds of alpha testing with 15 BCS and 8 HCPs. All BCS found the final DA prototype easy to navigate with sufficient interactivity. The information imbalance favouring the shared care option perceived by 60% of BCS in early rounds was rectified. The length of DA was optimized to be ‘just right’. Key revisions made included (1) presenting care options side-by-side to improve perceived information balance, (2) creating dedicated sections explaining HCPs’ care roles to address gaps in health system contextual knowledge, and (3) employing a multicriteria decision analysis method for preference clarification exercise to reflect the user’s openness towards shared care. Most BCS (73%) found the DA useful for decision-making, and 93% were willing to discuss the DA with their HCPs. Most HCPs (88%) agreed that the DA was a reliable tool and would be easily integrated into routine care.
Conclusions
Our experience highlighted the need to provide contextual information on the health care system for decisions related to care delivery. Developers should address potential variability within the care model and clarify inherent biases, such as low confidence levels in primary care. Future work could expand on the developed DA’s informational structure to apply to other care models and leverage artificial intelligence to optimize information delivery.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer