It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Clinical prediction models are often not evaluated properly in specific settings or updated, for instance, with information from new markers. These key steps are needed such that models are fit for purpose and remain relevant in the long-term. We aimed to present an overview of methodological guidance for the evaluation (i.e., validation and impact assessment) and updating of clinical prediction models.
Methods
We systematically searched nine databases from January 2000 to January 2022 for articles in English with methodological recommendations for the post-derivation stages of interest. Qualitative analysis was used to summarize the 70 selected guidance papers.
Results
Key aspects for validation are the assessment of statistical performance using measures for discrimination (e.g., C-statistic) and calibration (e.g., calibration-in-the-large and calibration slope). For assessing impact or usefulness in clinical decision-making, recent papers advise using decision-analytic measures (e.g., the Net Benefit) over simplistic classification measures that ignore clinical consequences (e.g., accuracy, overall Net Reclassification Index). Commonly recommended methods for model updating are recalibration (i.e., adjustment of intercept or baseline hazard and/or slope), revision (i.e., re-estimation of individual predictor effects), and extension (i.e., addition of new markers). Additional methodological guidance is needed for newer types of updating (e.g., meta-model and dynamic updating) and machine learning-based models.
Conclusion
Substantial guidance was found for model evaluation and more conventional updating of regression-based models. An important development in model evaluation is the introduction of a decision-analytic framework for assessing clinical usefulness. Consensus is emerging on methods for model updating.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer