It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Changes in renal perfusion may play a pathophysiological role in hypertension and kidney disease, however to date, no method for renal blood flow (RBF) determination in humans has been implemented in clinical practice. In a previous study, we demonstrated that estimation of renal perfusion based on a single positron emission tomography/computed tomography (PET/CT) scan with Rubidium-82 (82Rb) is feasible and found an approximate 5% intra-assay coefficient of variation for both kidneys, indicative of a precise method.This study’s aim was to determine the day-to day variation of 82Rb PET/CT and to test the method’s ability to detect increased RBF induced by infusion of amino acids.
Methods
Seventeen healthy subjects underwent three dynamic 82Rb PET/CT scans over two examination days comprising: Day A, a single 8-minute dynamic scan and Day B, two scans performed before (baseline) and after RBF stimulation by a 2-hour amino acid-infusion. The order of examination days was determined by randomization. Time activity curves for arterial and renal activity with a 1-tissue compartment model were used for flow estimation; the K1 kinetic parameter representing renal 82Rb clearance. Day-to-day variation was calculated based on the difference between the unstimulated K1 values on Day A and Day B and paired t-testing was performed to compare K1 values at baseline and after RBF stimulation on Day B.
Results
Day-to-day variation was observed to be 5.5% for the right kidney and 6.0% for the left kidney (n = 15 quality accepted scans). K1 values determined after amino acid-infusion were significantly higher than pre-infusion values (n = 17, p = 0.001). The mean percentage change in K1 from baseline was 13.2 ± 12.9% (range − 10.4 to 35.5) for the right kidney; 12.9 ± 13.2% (range − 15.7 to 35.3) for the left kidney.
Conclusion
Day-to-day variation is acceptably low. A significant K1 increase from baseline is detected after application of a known RBF stimulus, indicating that 82Rb PET/CT scanning can provide a precise method for evaluation of RBF and it is able to determine changes herein.
Clinical Trial Registration
EU Clinical Trials Register, 2017-005008-88. Registered 18/01/2018.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer