It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The latest hot stamping processes can enable efficient production of complex shaped panel components with high stiffness-to-weight ratios. However, structural redesign for these intricate processes can be challenging, because compared to cold forming, the non-isothermal and dynamic nature of these processes introduces complexity and unfamiliarity among industrial designers. In industrial practice, trial-and-error approaches are currently used to update non-feasible designs where complicated forming simulations are needed each time a design change is made. A superior approach to structural redesign for hot stamping processes is demonstrated in this paper which applies a novel deep-learning-based optimisation platform. The platform consists of the interaction between two neural networks: a generator that creates 3D panel component geometries and an evaluator that predicts their post-stamping thinning distributions. Guided by these distributions the geometry is iteratively updated by a gradient-based optimisation technique. In the application presented in this paper, panel component geometries are optimised to meet imposed constraints that are derived from post-stamping thinning distributions. In addition, a new methodology is applied to select arbitrary geometric regions that are to be fixed during the optimisation. Overall, it is demonstrated that the platform is capable of optimising selective regions of panel component subject to imposed post-stamped thinning distribution constraints.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dyson School of Design Engineering, Imperial College London , London SW7 2DB , UK
2 Impression Technologies Ltd , Coventry CV5 9PF , UK