It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
According to a report published by Business Wire, the market value of e-commerce reached US$ 13 trillion and is expected to reach US$ 55.6 trillion by 2027. In this rapidly growing market, product and service reviews can influence our purchasing decisions. It is challenging to manually evaluate reviews to make decisions and examine business models. However, users can examine and automate this process with Natural Language Processing (NLP). NLP is a well-known technique for evaluating and extracting information from written or audible texts. NLP research investigates the social architecture of societies. This article analyses the Amazon dataset using various combinations of voice components and deep learning. The suggested module focuses on identifying sentences as ‘Positive‘, ‘Neutral‘, ‘Negative‘, or ‘Indifferent‘. It analyses the data and labels the ‘better’ and ‘worse’ assumptions as positive and negative, respectively. With the expansion of the internet and e-commerce websites over the past decade, consumers now have a vast selection of products within the same domain, and NLP plays a vital part in classifying products based on evaluations. It is possible to predict sponsored and unpaid reviews using NLP with Machine Learning. This article examined various Machine Learning algorithms for predicting the sentiment of e-commerce website reviews. The automation achieves a maximum validation accuracy of 79.83% when using Fast Text as word embedding and the Multi-channel Convolution Neural Network.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Institute of Technology Patna, CSE, Patna, India (GRID:grid.444650.7) (ISNI:0000 0004 1772 7273)
2 SCOPE, Vellore Institute of Technology, Vellore, India (GRID:grid.412813.d) (ISNI:0000 0001 0687 4946)
3 Kebri Dehar University, CSE, Kebri Dehar, Ethiopia (GRID:grid.444650.7)