It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors and to realize distributed quantum networks. We propose a microwave-optical transduction platform based on long-coherence time superconducting radio-frequency (SRF) cavities coupled to electro-optic optical cavities to mitigate the loss mechanisms that limit the attainment of high conversion efficiency. We optimize the microwave-optical field overlap and optical coupling losses in the design while achieving long microwave and optical photon lifetime at milli-Kelvin temperatures. This represents a significant enhancement of the transduction efficiency up to 50% under incoming pump power of 140 μW, which allows the conversion of few-photon quantum signals. Furthermore, this scheme exhibits high resolution for optically reading out the dispersive shift induced by a superconducting transmon qubit coupled to the SRF cavity. We also show that low microwave losses enhance the fidelity of heralded entanglement generation between two remote quantum systems. Finally, high precision in quantum sensing can be reached below the standard quantum limit.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer