Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tomato leaves can have different diseases which can affect harvest performance. Therefore, accurate classification for the early detection of disease for treatment is very important. This article proposes one classification model, in which 16,010 tomato leaf images obtained from the Plant Village database are segmented before being used to train a deep convolutional neural network (DCNN). This means that this classification model will reduce training time compared with that of the model without segmenting the images. In particular, we applied a VGG-19 model with transfer learning for re-training in later layers. In addition, the parameters such as epoch and learning rate were chosen to be suitable for increasing classification performance. One highlight point is that the leaf images were segmented for extracting the original regions and removing the backgrounds to be black using a hue, saturation, and value (HSV) color space. The segmentation of the leaf images is to synchronize the black background of all leaf images. It is obvious that this segmentation saves time for training the DCNN and also increases the classification performance. This approach improves the model accuracy to 99.72% and decreases the training time of the 16,010 tomato leaf images. The results illustrate that the model is effective and can be developed for more complex image datasets.

Details

Title
A VGG-19 Model with Transfer Learning and Image Segmentation for Classification of Tomato Leaf Disease
Author
Thanh-Hai Nguyen  VIAFID ORCID Logo  ; Nguyen, Thanh-Nghia  VIAFID ORCID Logo  ; Ba-Viet Ngo  VIAFID ORCID Logo 
First page
871
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
26247402
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756648093
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.