Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A train seat–human body coupled dynamics model was established to predict the ride comfort of high-speed trains. The train and track and the seat and human body were both coupled in the model. An on-site vibration experiment in a high-speed train was carried out to calibrate each part of the train seat–human body coupled dynamics model. Based on the evaluation method proposed by BS EN 12299:2009, the distribution of ride comfort in the carriage and the effect of seat cushion stiffness and damping on ride comfort were analyzed systematically. The results showed that the seats in the middle of the carriage had the best comfort performance, while those near the side wall and close to the position where the suspension force of the second series was acting were less comfortable. The seat cushion stiffness and damping had great effect on ride comfort.

Details

Title
Prediction of Ride Comfort of High-Speed Trains Based on Train Seat–Human Body Coupled Dynamics Model
Author
Li, Heng; Xu, Zheng  VIAFID ORCID Logo  ; Dai, Wenqiang; Qiu, Yi
First page
12900
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756661686
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.