Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Azelaic acid (AA), as a natural product, was proven to be effective in targeting multiple causes of acne and related dermatological conditions, as it is well tolerated using different classical formulations (gel, cream, etc.). However, its limited aqueous solubility and inadequate penetration across the stratum corneum might be related to different possible side effects such as itching and burning. The aim of our work was to elaborate a novel liposomal formulation based on azelaic acid, with enhanced biocompatibility, bio-availability, antimicrobial, antigenotoxic, and anti-inflammatory properties. The liposomal formulations were prepared by the lipid film hydration method with different concentrations of azelaic acid (15%, 20%, 25%) and characterized in terms of morphological features, physico-chemical properties, antimicrobial, cytotoxic, and in vitro wound healing effect. Successful encapsulation with 80.42% efficiency, with a size of up to 500 nm and good stability, was achieved, as demonstrated by FTIR spectroscopy (Fourier Transform Infrared Spectroscopy), DLS (dynamic light scattering), and zeta-potential measurements. In terms of antibacterial activity, all the liposomal formulations exhibited a better effect compared to free AA solution against Staphylococcus aureus and Enterococcus faecalis. Cytotoxicity assays and an in vitro “scratch” test performed with normal human dermal fibroblasts revealed an accelerating healing effect, while a comet assay evidenced the protective effect of AA liposomal formulations against hydrogen-peroxide-induced DNA damage in fibroblasts. The optimum formulation in terms of both the antimicrobial and wound healing effect was AALipo20% (liposomes with 20% azelaic acid included).

Details

Title
Novel Liposomal Formulation with Azelaic Acid: Preparation, Characterization, and Evaluation of Biological Properties
Author
Pasca, Paula Melania 1 ; Miere, Florina 1   VIAFID ORCID Logo  ; Antonescu, Angela 1   VIAFID ORCID Logo  ; Fritea, Luminita 1 ; Banica, Florin 1 ; Vicas, Simona Ioana 2   VIAFID ORCID Logo  ; Laslo, Vasile 2 ; Zaha, Dana Carmen 1   VIAFID ORCID Logo  ; Cavalu, Simona 1   VIAFID ORCID Logo 

 Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania 
 Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410087 Oradea, Romania 
First page
13039
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756663080
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.