Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present study manifests an innovative and green approach to graft metal ion adsorbent, polyethylenimine (PEI), onto an electrospun chitosan (CS)/polycaprolactone (PCL) composite membrane via atmospheric pressure nitrogen plasma grafting polymerization. FTIR absorption peak at around 1690 cm−1 was attributed to the bending vibration of N-H from PEI. Since the plasma exposure time is a dependent factor of –NH bond formation, an increased nitrogen content up to 3.3% was observed with an extensive reaction time under plasma treatment. In addition, N1s spectra showed a clear PEI dominating characteristic at 401.7 eV, which suggested a successful grafting of PEI onto the CS/PCL membrane. According to the EDX analysis, a significant amount of copper ions was detected in PEI-CS/PCL membranes. This study showed that a greener wastewater treatment can be realized with the developed plasma synthesis technology.

Details

Title
Plasma-Induced Graft Polymerization of Polyethylenimine onto Chitosan/Polycaprolactone Composite Membrane for Heavy Metal Pollutants Treatment in Industrial Wastewater
Author
Sung-Lin, Tu 1 ; Chen, Chih-Kuang 2   VIAFID ORCID Logo  ; Shih-Chen, Shi 3   VIAFID ORCID Logo  ; Jason Hsiao Chun Yang 1   VIAFID ORCID Logo 

 Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan 
 Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan 
 Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan 
First page
1966
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756684080
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.