1. Introduction
Fibrotic interstitial lung diseases (f-ILDs) are a heterogeneous group of diffuse parenchymal lung disorders that may share common overlapping clinical characteristics and, under not yet clearly identified circumstances, progression to pulmonary fibrosis [1,2,3,4]. Variable susceptibility and progression to diffuse lung fibrosis constitute the major determinant of their unpredictable clinical course and prognosis [5,6,7,8]. A major achievement of the last decades in the elucidation of their etiopathogenetic mechanisms, besides the role of environmental, aging-related, immune or other factors, is that genomics play an important, previously unsuspected, role in their development [9,10,11]. f-ILDs include idiopathic interstitial pneumonias (IIPs), autoimmune-rheumatic-disorder-related lung fibrosis, hypersensitivity pneumonia, sarcoidosis, and unclassified and rare f-ILDs [12,13,14]. Idiopathic pulmonary fibrosis (IPF), the “core” of all f-ILDs, is the most common and clinically severe, bears the histology of usual interstitial pneumonia (UIP), and although it invariably presents an ominous prognosis despite current pharmacological treatment, its clinical course is highly unpredictable, lasting at diagnosis from months to almost a decade [1,15,16]. Most of the progress on genomics in f-ILDs is in IPF, where genetic variants underlie 30% of patients at risk of developing sporadic or familial IPF (two or more cases of IPF in the same family within three degrees of relationship) [17]. The same genetic susceptibility does not lead to identical clinical, imaging, or histological phenotypes in either the sporadic or familial context, delineating the role of epigenetic factors [18,19].
The traditional view that IPF is a sporadic disease of unknown etiology limited to the lungs and almost always affecting the elderly has been challenged in the last decade by the clinical observation that it develops 10 times more often in members of families and that it may develop as part of a multisystem, inherited disease of telomeres, named telomeropathy (short telomeres syndrome, STS) where members of the same family may also present skin, mucosa, and hair abnormalities, T-cell immunodeficiency, and bone-marrow and/or liver disease [20,21,22,23,24,25]. All the above, in combination with the fact that certain forms of interstitial lung disease develop at a very early age (children’s interstitial lung disease-chILD) may be attributed to genetic predisposition, provided evidence of an inheritable component in IPF [26].Thanks to progress in genomics, it has been shown that heritability in adult IPF relates, in most cases but not all, to pathogenic variations in surfactant-related genes (SRGs) and telomere-related genes (TRG) in monogenic inheritance and a single-nucleotide polymorphism (SNP) in the promoter of the MUC5B gene encoding Mucin 5B (rs35705950 T risk allele) in polygenic inheritance (the most common genetic variant) [27]. Genetic studies in IPF and also in other f-ILDs have identified several SNPs associated with fibrosis, the rare variants conferring a higher risk while the common ones a lower risk [28]. Genome-wide-association studies continue to identify new candidate chromosomal loci to be associated with increased susceptibility to IPF [29,30,31]. The discovery in IPF that multiple genetic components, including the rarest variants, may be encountered in the same patient broadens our understanding of clinical heterogeneity [32,33,34], suggesting co-responsibility in the pathogenetic mechanisms of the disease instead of a mere cohabitation and necessitating a unifying pathogenetic theory regarding genetic risk. Differences in genomics in IPF patients may drive differences in the disease course (phenotypic unpredictability) through the diversity of pathogenetic mechanisms and in the near future may lead to a personalized approach towards precision in the cure of a currently incurable disease [32,35,36]. The aim of the study is to provide an overview of genetics in IPF from a clinical perspective.
2. Overview of IPF Pathogenesis
Despite considerable progress and decades of research unraveling the complexity of mechanisms underlying the pathophysiology of IPF, a unifying and credible hypothesis linking the multiplicity of cell types, molecular factors, and signaling pathways in its pathogenesis still remains elusive [37,38,39]. Understanding its pathology, in essence the process of lung wound healing, appears clearly the first step in the elucidation of IPF pathogenesis [40,41,42,43,44]. Parenchymal lung fibrosis, the end of the pathogenetic process, begins or appears early on in the subpleural basal and posterior peripheral areas of the lungs, sites of increased traction forces, and is characterized by extreme remodeling of the alveolar spaces and walls including the distal bronchioles (traction bronchiolectasis-bronchiectasis) [45,46,47]. The histopathological hallmarks include the bronchiolization of the distal airspaces, honeycombing, fibroblastic foci, and abnormal epithelial hyperplasia defining the UIP histology [48]. Fibrosis constitutes of an aberrant non-resolving extracellular matrix deposition and necessitates multiple cells, fibrogenic molecules, and signaling pathways triggered by several asymmetrical injuring factors, acting repeatedly on alveolar epithelial cells (AEC), according to the current pathogenetic theories [49]. Injured AECs due to exposure to inhaled adverse factors acting on a susceptible individu-al background due to ageing and susceptible genome leads to senescence of AECs and through a multitude of pathways acting on fibroblasts and myofibroblasts alters extracel-lular matrix leading to aberrant and self-perpetuating wound healing [50,51,52]. Indeed, it is known that AEC2s are progenitor cells for AEC1s (which cover most part of the alveolar surface) in a normal lung. After damage, either acute or subacute, of the alveolar epithelium, AEC2s proliferate and transdifferentiate into AEC1s. Senescent and dysfunctional AEC2s are not able to transdifferentiate into AEC1s, but activate differential pathways, e.g., those involved in epithelial–mesenchymal transition that eventually lead to aberrant repair (ECM deposition) without regeneration and to fibrosis. [53]. Genetic predisposing factors may stand alone or even coexist with most of the above predisposing conditions and through a diversity of pathogenetic mechanisms may lead to a “homogeneous” pattern of fibrotic lung disease, determine its earlier appearance, influence clinical course and prognosis, and possibly in the future direct early therapeutic measures [29,54,55,56,57]. The identification of high-risk populations may also guide early referral and the adoption of preventive measures that could postpone the development of the disease [58,59,60,61,62,63,64]. However, in familial PF, despite considerable progress, the identification of predisposing genetic variants still eludes us in a significant proportion of patients [65].
3. Historical Perspective on Genetics in IPF
Genetics have revolutionized the way we approach human disease and IPF is not an exception to this rule (Figure 1) [66,67,68]. Inheritable PF has been the focus of intense research since 1950, when the first cases of familial PF in identical twins were reported, raising questions about the presence of a “fibrosis gene” (Figure 2) [69,70].
4. Surfactant-Protein-Related Genes
In 2001, a breakthrough occurred when a mutation in the gene encoding surfactant protein C (SFTPC) in a young mother and a child with familial ILD was identified [71]. In 2002, the SFTPC mutation was identified in a large family, including adults with UIP and children with nonspecific ILD [72]. Thereafter, many studies confirmed that SFTPC mutations may cause familial lung disease in an autosomal dominant pattern with very high penetrance in all age groups, from the newborns to the elderly [73,74]. In 2009 and 2016, it was shown that very rare mutations in the genes encoding the surfactant proteins A2 and A1—respectively, SFTPA2 and SFTPA1—segregated with an ILD and adenocarcinoma phenotype in large families with multiple members with ILD occurring at a wide age range and/or adenocarcinoma only in adults [75,76]. The spectrum of SRGs implicated in inheritable PF was further expanded by the observation that bi-allelic mutations in the gene of ATP-binding cassette subfamily A, member 3 (ABCA3) protein, which plays a cardinal role in surfactant homeostasis, are associated with neonatal respiratory distress syndrome (RDS) and in “chILD” surviving into adulthood [77,78,79,80]. Mutations in NKX2-1, which encodes thyroid transcription factor-1, regulating the transcription of surfactant proteins and ABCA3, as well as many other lung proteins, was found to be associated with ILD in the context of “brain-thyroid-lung” syndrome (neurological symptoms, peripheral hypothyroidism, and f-ILD). Lung involvement ranges from neonatal RDS to adult PF inherited through an autosomal dominant pattern with variable penetrance. In 25% of patients, it develops as an isolated phenotype and in another 19% in association only with neurological symptoms [81,82,83,84]. Disease-causing mutations in the gene encoding surfactant protein D (SFTPD) have not yet been identified, whereas bi-allelic mutations in the gene encoding surfactant protein B (SFTPB) are typically associated with neonatal RDS; no adults have been reported so far [85,86]. SRG pathogenic variations seem to be implicated in the development of pulmonary fibrosis by disrupting AEC2 homeostasis. Very recently it has been shown that mutations in SFTPC lead to accumulation of the mutated protein at the plasma membrane through abnormal recycling from endosomes and from impaired internalization into multivesicular bodies with still unknown effects on the signaling within the AEC2 or its neighbors and the surface expression of otherwise unrelated proteins. Mutations in SFTPA2 and SFTPA1 are thought to abolish the secretion of mutant proteins, leading to their sequestration in the AEC2. Conversely, mutations in ABCA3 and NKX2-1 result in dysfunctional lamellar bodies and disrupt surfactant homeostasis in AEC2s, which play the cardinal role in alveolar maintenance and repair of recurrent epithelial cell injury of any etiology [87,88,89,90,91,92,93,94,95,96,97,98,99].
5. Clinical Implications of Carriership of SRG Mutations
Depending on the cohorts, the contribution of SRG mutations in monogenic pulmonary fibrosis ranges from 2 to 5%, with the exception of some populations where it may reach 25% in chILD [10,26,74,100,101,102,103,104]. Patients who are carriers of SRGs present a great heterogeneity of phenotypes, from lethal neonatal RDS to, more rarely, chILD and adult ILD [74]. In adults, a higher degree of suspicion is required, especially in early-onset disease and in familial PF, where lung fibrosis and/or pulmonary adenocarcinoma segregate in many family members. Gender and environmental exposures do not seem to play a significant role in the development of the disease. In adult patients, the age at which SRGs-ILD has been reported ranges from 19 to 71 years and depends on the underlying mutation. The median age for SFTPC is 37 years, whereas for SFTPA1/SFTPA2 is 48 years [99]. ABCA3 mutations-related ILDs have been described in cases of chILD surviving into adulthood and in adults [79,80,105,106,107]. The radiological imaging patterns conform more often to unclassifiable ILD with reticular abnormalities, ground glass opacities and scattered cystic lesions and may lead to the decision for lung biopsy, often disclosing a UIP pattern and in some association with non-specific or desquamative interstitial pneumonitis pattern or even pulmonary alveolar proteinosis (PAP)-like histology [108,109,110]. The major clinical implication so far described in SRG mutations relates to the high frequency (37%) of lung carcinoma (mostly of the adenocarcinoma type) alone (12%) or in combination with pulmonary fibrosis (25%) in SFTPA1/SFTPA2 adult carriers. Therefore patients should be regularly screened, especially after the age of 40 years [74,76,99] and family members genetically tested for the presence of SFTPA1/SFTPA2 mutations. No effective treatment exists for surfactant-related genetic disease and there is no consensus on it; studies report treatment with azithromycin or hydroxychloroquine, while others opt for the immunosuppressants azathioprine, methylprednisolone, and cyclophosphamide with no curative or long-term stabilizing effects [111,112]. Gene-based therapies as well as functional rescue therapies of misfolding ABCA3 mutations by molecular correctors are promising for the future [113,114]. For the moment, bilateral lung transplantation remains the best option for end-stage fibrotic chILD and adult ILD related to SRG mutations [74,115].
6. Telomere-Related Genes and Telomeropathy
In 2007, two independent research groups reported the association of mono-allelic telomerase mutations and the development of familial PF in adults [116,117]. Their observations initially regarded only mutations in telomerase reverse transcriptase (TERT) and the RNA component of the telomerase complex (TERC), both responsible for telomere length maintenance, and were partly inspired by the study of the genetic background of the inheritable multisystem disease dyskeratosis congenita, where mutations in the telomerase pathway were initially recognized to cause STS characterized by bone-marrow and liver failure and fibrotic ILD at a young age [118]. Dyskeratosis congenita (DC), was the first described telomeropathy; it consists of an inherited bone-marrow failure syndrome clinically characterized by a muco-cutaneous triad (skin pigmentation, nail dystrophy, mucosal leukoplakia), bone-marrow failure, immune deficiency, pulmonary fibrosis, liver cirrhosis, and the insurgence of malignancies. The discovery in the last 15 years that telomeropathy is a disease related to defects in telomere maintenance with short telomeres and mutations affecting telomerase activity, assembly, and telomere integrity has enabled scientists to consider the telomerase-complex pathway in the pathogenesis of familial PF [23,119,120,121,122,123,124,125]. The genes implicated in telomeropathy are: ACD, CTC1,DCLRE1B, DKC1, NHP2, NOP10, PARN, POT1, RPA1, RTEL1, STN1, TERC, TERT, TINF2, WRAP53, and ZCCHC8. Mono-allelic or bi-allelic pathogenic variants of a few genes are identified in patients with different clinical spectrum. Severe forms of DC and Höyeraal–Hreidarsson, Revesz, or Coats plus syndromes are more often associated with biallelic variants, while heterozygous TERT, TERC, RTEL1, PARN, ACD, NHP2, and NOP10 variants are found in PF patients(Table 1) [126]. Thereafter, the discovery of mutations in numerous genes of the telomere-maintenance pathway established the role of this pathway in the development of accelerated aging and monogenic PF and led to the acknowledgement of TRG pathogenic mutations as the major monogenic cause of IPF, the genetic basis of 30% of cases of familial PF [127,128,129,130,131,132,133,134,135,136,137,138,139]. The net effect of telomere-shortening on somatic cells beyond a critical point is DNA damage leading to apoptosis in high-turnover tissue cells and senescence in low-turnover cells such AECs, and loss of their capacity for resilience and repair leading to repeated injury due to internal or external hits and to lung parenchyma pro-fibrotic remodeling [140]. The effect of TRG germline mutations on telomere length is systemic, affecting not only the lung but also the bone marrow and liver. More than 70% of patients that carry TRG mutations develop monogenic PF, considered to be the most prevalent “telomeropathy” manifestation. Extra-pulmonary signs or diseases could also be present with variable penetrance: early hair greying, bone-marrow failure syndrome, immunodeficiency-related risk of infections, and liver disease. Interestingly, 15% of patients with familial PF are found to have short telomeres and develop extrapulmonary manifestations (personal or familial) of STS without any identifiable TRG mutation [141,142,143]. Short telomeres in familial PF patients and their families may represent a surrogate for TRG pathogenic mutations [144,145]. Shortened telomeres are also observed in a significant proportion of sporadic IPF cases, but in that case TRG pathogenetic mutations are disclosed in less than 2% of adult patients [146,147,148,149,150,151,152,153]. TRG-mutation-associated ILDs are very rare in pediatric patients outside the context of syndromes such as DC, but are increasingly recognized [154].
7. Clinical Implications of Carriership of Pathogenic Variations in Telomere-Related Genes
Approximately 30% of patients with familial PF are carriers of pathogenic variations in TRGs. Elaborate genealogical research studies have shown that a latency period of >300 years may pass before the cumulative effect of telomere shortening eventually leads to familial PF in TRG mutation carriers [141,155]. In addition to personal/familial extra-pulmonary abnormalities suggestive of STS involving the skin, the liver, and the bone marrow, the disease is uniformly progressive, irrespective of its phenotypic heterogeneity, and bears a reduced transplant-free survival time [18,19,32,156,157]. The increased risk for complications and high mortality post-lung-transplantation is due mostly to sepsis, greater than expected bone-marrow suppression and increased rates of chronic allograft dysfunction and airway complications (dehiscence and stenosis) [156,157,158,159,160]. Subclinical bone marrow and liver abnormalities, including significant T-cell immunodeficiency silently existing in these patients, may aggravate post-lung transplantation-immunosuppression-drug toxicities [161]. Therefore, telomeropathy is now recognized in addition to age, frailty, pulmonary hypertension, cardiovascular risk, and lung cancer as a parameter for which careful consideration must be given to pre-operative optimization, surgical technique, pulmonary rehabilitation, and a tailored immunosuppressive treatment protocol to produce the best post-transplantation outcomes [127,143,162,163,164,165,166]. Bone-marrow failure presenting as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) may arise at any timepoint in the disease’s course in almost 10% of patients, especially those younger than 65 years old [18,19,32,141,167,168,169,170]. Naturally occurring somatic mutations in telomere maintenance genes observed in some patients with familial-PF potentially might rescue premature age-related clonal hematopoiesis and transformation to MDS/AML [139,171]. Solid tumors are rare; their risk appears higher in male DKC1 mutation carriers [141]. Subclinical forms of liver involvement and cryptogenic liver cirrhosis may also affect patients with or without concurrent pulmonary fibrosis and/or bone marrow failure [172,173,174]. Occasionally, liver disease may present as severe unresponsive hypoxemia (hepatopulmonary syndrome) [161,175,176]. Taking a careful clinical and family history focused on extrapulmonary manifestations of STS can provide important prognostic information in patients with IPF, as this is associated with shorter survival [177]. Patients who are carriers of TRG mutations should be systematically examined for both pulmonary and extrapulmonary disease severity and progression. It is recommended to stop or limit environmental toxic factor exposure, including tobacco smoke, alcohol, and professional exposures.
Patients who are carriers of TRG mutations have so far been treated following the recommendations for patients with sporadic IPF: “a conditional YES for antifibrotics” [33,178,179,180]. Androgens, including danazol, are under investigation [181,182]. The possibility of telomerase gene therapies, the potential for CRISPR editing to lengthen telomeres, or other approaches to target molecular defects associated with aging and TRG mutations have been examined but are so far restricted by great obstacles and challenges that probably only a deeper understanding of fundamental lung biology could overcome in the future [127,183].
8. Interferonopathies
8.1. STING-Associated Vasculopathy with Onset in Infancy
(SAVI) is an auto-inflammatory monogenic disease related to heterozygous gain-of-function mutations in STING1, an encoding stimulator of interferon genes (STING). Patients present early in life with features of systemic and peripheral vascular inflammation, vascular and tissue damage (nail dystrophy and gangrene of fingers or toes, nasal septum perforation), low-titer autoantibodies, and f-ILD (Table 1). Pathobiologically, the stimulation of STING activates endothelial cells and induces upregulation of interferon-response genes, apoptosis-pathway genes, and endothelial cell death [184,185,186,187].
Aberrant activation of the STING pathway is also detected in COPA syndrome, characterized by dysregulation of the innate and adaptive immune response. Clinically, symptoms occur with varying severity, including ILD with or without pulmonary hemorrhage, inflammatory arthritis, or immune-mediated kidney disease; autoantibodies are evident in most young patients [188]. COPA partially overlaps with SAVI in features such as severe systemic inflammation, recurrent fevers, ILD, early onset in life, and a predominant constitutive type I IFN gene activation. It has been shown that dominant autosomal loss-of-function mutations in the COPA gene, which encodes the α-subunit (COPα, COPA) of the coatomer complex I (COPI) lead in COPA deficiency and cause disease through defective retrograde trafficking, specifically the lost Golgi-to-ER retrieval of immune signaling protein STING pathway (Table 1) [189,190,191,192]. An increased specific “interferon signature” associating IFNa dosage and expression of IFN stimulated genes (ISGs) could be found in blood samples of patients with STING1 or COPA mutations.
8.2. Hermansky–Pudlak Syndrome
Hermansky–Pudlak syndrome (HPS), first described in 1959, is an inherited multisystem autosomal recessive disease characterized by oculocutaneous albinism, bleeding diathesis, inflammatory bowel disease, and pulmonary fibrosis [193,194]. There are 10 genes implicated in HPS: AP3B1, HPS1, HPS3, HPS4, HPS5, HPS6, and less commonly, AP3D1, BLOC1S3, BLOC1S6, and DTNBP1, inherited in an autosomal recessive manner. Pulmonary fibrosis has so far been described in HPS1, HPS4, and AP3B1 genes (Table 1) [195,196,197,198,199]. Hermansky–Pudlak syndrome type 2 manifests with fibrosing lung disease early in childhood [200]. The pathobiology of the syndrome is related to the defective formation of lysosome-related organelles and abnormal intracellular vesicle trafficking due to mutations in genes regulating protein complexes such as BLOC-1, BLOC-2, BLOC-3, and the AP-3 complex, manifesting in various organs and cells including AEC2; endoplasmic reticulum stress, impaired autophagy, defective surfactant secretion, and altered phospholipid content in association with the dysregulation of alveolar macrophages, triggering the development of lung fibrosis [201,202,203,204,205,206,207,208].
9. Clinical Implications of Other Rare Monogenic Forms of Pulmonary Fibrosis
Mutations in genes related to rare syndromic forms of IPF with characteristic extrapulmonary manifestations have historically contributed to the understanding of its heritability and may add to the search for its pathogenesis, unraveling specific pathobiologic pathways [164,209]. The major clinical implications of the genetic analysis in case of extrapulmonary findings consistent with other syndromic forms of pulmonary fibrosis, such as Hermansky–Pudlak, STING, and COPA syndromes, consist mainly in the documentation of the diagnosis and the initiation of specific treatments. The clinical utility of genetic analysis in that case is associated with personalized treatment approaches as well as multidisciplinary collaboration for management by expert centers. The participation in international registries and multicenter clinical trials is the only way that further expert knowledge could be gained for these rare and very challenging diseases [210,211,212,213,214].
10. Common Variants in IPF and MUC5B rs35705950
The development of advanced genetic techniques such as genome wide association studies (GWAS) allows the examination of the association of hundreds of variants and the risk of developing IPF. So far, more than 20 mutations in genes implicated in host defense, cell–cell adhesion, and DNA repair have been shown to genetically predispose to the disease, demonstrating that IPF could be considered not only a monogenic but also a polygenic disease with a lot of yet unidentified variants implicated in the susceptibility of the disease and that genetic susceptibility regards not only familial but also sporadic cases [29,30,215]. The common single nucleotide polymorphism (SNP) in the promoter region of the gene MUC5B that encodes muc5B protein (MUC5B rs 35705950T allele) as well as the rest of the common SNP associated with IPF is shown in Figure 2 [30,55,216,217,218,219,220,221,222].
In 2011, a common SNP in the promoter region of the gene MUC5B that encodes muc5B protein (MUC5B rs 35705950T allele) was reported as the strongest polygenic risk factor for the development of familial PF and IPF [223]. MUC5B rs35705950 T risk allele carriership increases the odds ratio in heterozygous and homozygous patients by 6.8 and 20.8 for familial ILD and 9.0 and 21.8 for IPF, respectively [223]. This association was found by several independent groups of researchers initially in IPF patients and later on in other forms of progressive fibrotic lung disease, such as rheumatoid arthritis-UIP-ILD, fibrotic hypersensitivity pneumonitis, asbestosis, and interstitial lung abnormalities (ILAs) [224,225,226,227,228,229,230,231,232]. In this context, pulmonary fibrosis mechanisms relate to the altered biology of the bronchial secretory cell. MUC5B rs35705950 T risk allele carriership increases the expression of mucin5B in the distal lung, causes mucociliary dysfunction and ER stress, and triggers a vicious cycle of injury/repair and regeneration at the bronchoalveolar junction leading to fibrosis [233,234,235,236,237,238,239,240,241].
11. Clinical Implications of Single Nucleotide Polymorphism and MUC5B rs35705950 T Risk Allele Carriership
Genome-wide association studies are constantly revealing common SNPs associated with an increased risk for IPF that could be considered in a polygenic transmission model of IPF in contrast to the monogenic one so far described. The clinical implications of those SNPs are not extensively studied with the exception of the MUC5B rs35705950 T risk allele and the SNP in TOLLIP [242]. MUC5B rs35705950 T risk allele carriership is related in both sporadic and familial PF with confident UIP patterns both on HRCT and on histology [243,244,245,246]. In asymptomatic relatives of patients with familial PF as well as in any other individual incidentally found to have ILAs, carriership of MUC5B rs35705950 T risk allele is significantly associated not only to the development but also to the progression of PF [230,231,247,248]. In patients with rheumatoid arthritis, MUC5B rs35705950 T risk allele carriership has recently been shown to have a significant contribution to the prediction of subclinical RA-ILD disease [249]. Little evidence exists so far that SNPs in common variants could be used to stratify IPF patients and predict response to treatment [250]. Post-hoc analysis in the PANTHER-IPF trial showed that rs3750920 (TOLLIP) TT genotype affected positively the response to N-acetylcysteine (NAC) providing evidence that in a precision-medicine era, genotype-stratified prospective clinical trials should be conducted before any recommendation for therapeutic options in IPF [251]. Despite reports identifying common SNPs and rare missense variants associated with ILD, there are no large multicenter studies that assess the clinical value of screening for rare ILD-linked genetic variants in patients with sporadic IPF.
12. Special Considerations
12.1. Children Diagnosed with ILD Reaching Adult Life
Special consideration is due to genetics in children’s interstitial lung disease (chILD). The range of diseases in that case becomes even broader, including, in addition to SRG- and TRG-related diseases, many rare and ultra-rare entities, such as surfactant protein catabolic disorders related to CSFRA, CSFRB, and OAS1 mutations; syndromic forms of ILD due to intergrin mutations; and chILD related to filamin A variants [25,252,253,254,255]. The scope of the present review could not embrace such a broad spectrum and focuses only on adult disease. However, as the quality of care ameliorates for chILD, survival into adulthood allows a number of those patients to transfer from pediatric to adult care and engages adult pulmonologists to meet their needs [256]. A recent survey demonstrated that the availability of data regarding the characteristics of these patients as well as their transitional care are scarce and tailored the way for immediate action through a dedicated ERS task force whose results are highly anticipated in the near future [257,258].
12.2. Genetic Testing for f-ILDs in Everyday Clinical Practice
At an international level, genetic testing for f-ILDS is not clinically available in every country, nor could it be available in each institution given the increased costs and specialized knowledge that are required. Even more importantly, the interpretation of the results of genetic analysis, especially the pathogenic role of every variant that is identified is a very demanding, time-consuming process that only expert centers can perform. Even in that case, multidisciplinary discussion and international collaboration are often needed. Genetic testing is complete only when genetic counselling is offered to the patients and their families in order to assimilate the clinical, psychological, social, and familial implications of genetic predisposition to disease and adapt accordingly. Based on expert opinion, the clinical indications for which genetic testing may be considered with a high probability of identifying a pathogenic mutation include patients with familial PF, patients with personal or family features of telomeropathy, syndromic forms of the disease, early-onset pulmonary fibrosis without any other obvious explanation, and asymptomatic relatives of patients with known pathogenic disease-causing variants. Genetic testing could also be considered in families where pulmonary fibrosis and adenocarcinoma of the lung segregate in many family members across generations and in patients with ILAs, as well as before lung transplantation. Genetic testing for sporadic PF is not currently recommended [64,65,259].
Official guidelines are still missing; however, expert opinion regarding the examination of relatives of IPF-associated pathogenic variants suggests an initial evaluation at a specialized multidisciplinary outpatient clinic and systematic evaluation thereafter, depending on the individual findings in each case. Genetic analysis may be performed only at the request of a relative who is examined after written informed consent. Depending on the country in question’s legislation, only adult asymptomatic relatives may benefit from a genetic testing. An action plan for the avoidance of toxic exposures is proposed and special care is undertaken depending on the presence or absence of a specific disease. If the genetic analysis confirms the presence of a mutation in an asymptomatic and healthy relative, a regular follow-up is proposed every 3–5 years, unless symptoms suggestive of progressive disease develop earlier [64]. The above recommendations are based on the findings of elaborate cohort studies including first-degree asymptomatic relatives of patients with familial f-ILD that have demonstrated the presence of substantial (25%) subclinical disease [63,260,261,262,263,264]. Early diagnosis of any progressive f-ILD in the familial context could lead to earlier treatment, but whether early treatment translates to improved outcomes is currently unknown and needs to be further explored [265].
13. Conclusions—Future Perspective
In the future, the integration of genetic evaluation in the diagnostic algorithm of IPF next to long-standing traditional modalities such as HRCT, BAL, and lung biopsy could support precision medicine and guide the multidisciplinary discussion team to personalized diagnostic and therapeutic approaches. The detection and referral of at-risk populations, including asymptomatic relatives of carriers of known mutations for early recognition of the disease, could optimize clinical outcomes in a currently lately documented and incurable disease. Identifying interstitial lung disease with a genetic background in pediatric populations that survive into adult life could have a tremendous impact on timely diagnosis ensuring a better quality of life, targeted therapies and a successful transition to expert adult care. Genetic counseling regarding the mode of inheritance and the risk to offspring and the other family members provided to all IPF patients with a genetic risk should help informed decision making. Pre-natal and pre-implantation genetic testing bear significant ethical implications and genotype identification and family history are often insufficient to predict the course of disease in an individual and therefore should be handled with caution.
In the future, the decoding of missing heritability in IPF could further advance our understanding of the disease and offer the opportunity to delay its progression and increase survival. The collaborative work and solidarity of scientific experts and clinicians all over the world regarding the role of genetics in IPF patients is the way to safeguard the tremendous knowledge that genetic science offers, transforming it into healing wisdom.
Conceptualization, S.A.P. and E.D.M.; methodology, S.A.P., E.D.M., C.K., I.B. and A.B.; software, S.A.P., M.K. and E.D.M.; validation, C.K., R.B., N.N., M.G., P.D. and B.C.; formal analysis, S.A.P., L.K., V.A. and E.D.M.; investigation, S.A.P., C.K., R.B., M.K., V.A. and E.D.M.; resources, L.K.; data curation, S.A.P., C.K. and E.D.M.; writing—original draft preparation, S.A.P. and E.D.M.; writing—review and editing, C.K., R.B., I.B., N.N., A.B., M.G., P.D. and B.C.; visualization, S.A.P., V.A. and E.D.M.; supervision, E.D.M.; project administration, S.A.P. and E.D.M. All authors have read and agreed to the published version of the manuscript.
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 1. Major discoveries in the history of genetics: 1859: Ch. Darwin: “On the Origin of Species”; 1866: Gr. Mendel: Experiments in Plant Hybridization”; 1869: Fr. Miescher: “nuclein” (DNA); 1919: Ph. Levene: DNA structure; 1926: HJ Müller: radiation and lethal mutations; 1944: O. Avery, C. MacLeod, M. McCarty inheritance through “hereditary units”; 1950: E. Chargaff: “the total number of purines in DNA is equal to the total number of pyrimidines”; 1950s: JA Clements: physical properties of surfactant; 1953: J. Watson and F. Crick: three-dimensional double helical structure of DNA molecule; 1959: ME Avery: surfactant deficiency in RDS in premature babies; 1959: Hermansky–Pudlak syndrome; 1966: MW. Nirenberg break the genetic code; 1972: W. Fiers: first sequence of a gene; 1977: F. Sanger: sequence DNA for the first time; 1983: K. Banks Mullis: polymerase chain reaction; 2001–2003: Francis Collins: Human Genome Project; 2009: EH. Blackburn, CW. Greider, JW. Szostak: Nobel Prize “for the discovery of how chromosomes are protected by telomeres and the enzyme telomerase”.
Figure 2. Discoveries in IPF genetics: 1950: IPF is reported in identical twin sisters; 1996–1998: First mutations in Hermansky–Pudlak syndrome (HPS) genes; 1997: Is there is fibrosis gene in pulmonary fibrosis? 2001: First SFTPC mutation in familiar IP; 2002: NKX2-1 mutations in brain-thyroid-lung syndrome; 2003: HPS-4 mutations; 2004: Bi-allelic ABCA3 mutations in NRD syndrome and chILD; 2005: Mutations in TERT in patients with bone-marrow failure; 2007: TERT and TERC mutations in familiar IP; 2009: SFTPA2 mutations FIP and adenocarcinoma families, 2010: ELMOD2 SNP polymorphism in IPF; 2011: A common SNP in the promoter region of the gene MUC5B: the strongest polygenic risk factor for sporadic IPF and familiar IP; 2011: IL8 SNP polymorphism in IPF; 2012: CDKN1A, 1L1RN, TP53 SNP polymorphisms in IPF; 2013: ATP11A, DPP9, DSP, FAM13A, HLA-DRB1, MAPT, MUC2, OBFC1, TERC, TERT, MDGA2, SPPL2C, TGFB1, TOLLIP, TLR3 SNP polymorphisms in IPF; 2014: DKC1 mutation in familiar IP; 2014: TMEM173 mutations in SAVI, 2015: RTEL1, PARN and TINF2 mutations in familiar IP; 2015: COPA mutations in COPA syndrome; 2015: IND, LRRC34 SNP polymorphisms in IPF; 2016 SFTPA1 mutations in FIP and/or adenocarcinoma families; 2016: NAF1 mutations in pulmonary fibrosis-emphysema; 2017: AKAP13 SNP polymorphism in IPF; 2018: HPS-2 gene mutations: fibrosing lung disease early in childhood; 2019: ZCCHC8 mutations in FIP; 2020: NOP10 and NHP2 mutations in FIP; 2022: POT1 mutation in FIP; 2022: KNL1, NPRL3, STMN3, RTEL1, and an intergenic variant in 10q25.1 in IPF; 2022: KIF15 mutations in IPF; 2022: RPA1 mutations in pulmonary fibrosis and STS.
Syndromic forms of pulmonary fibrosis.
Telomeropathy |
Hermansky–Pudlak | SAVI | COPA |
---|---|---|---|
Clinical and Laboratory Manifestations | |||
Skin: hyperpigmentation, nail dystrophy, hyperhidrosis, hair loss | Oculocutaneous albinism, photophobia, strabismus, nystagmus | Non-healing ulcers |
Diffuse alveolar hemorrhage |
Oral: Leukoplakia, ulcerations, atrophic glossitis, periodontitis, dental carries, lichenoid lesions, hyperpigmentation, neoplasms | Bleeding disorders | Failure to thrive in |
Renal disease lupus nephritis |
Lung fibrosis |
Lung fibrosis (HPS1, HPS4, and AP3B1 genes) | Lung fibrosis | Arthritis |
Bone-marrow failure, anemia | Kidney’s disease | Anemia, leukopenia, thrombocytosis, |
Cystic lung disease |
Skull and CNS: microcephalia, cerebral hypoplasia, mental retardation, deafness | Granulomatous colitis | Myositis | |
Hypogonadism | Joint stiffness | ||
Esophageal stenosis | |||
Osteoporosis | |||
Short stature | |||
Skeletal malformations | |||
Epiphora | |||
Genetic Variants | |||
Interferonopathies | |||
17genes implicated: ACD, CTC1, DCLRE1B, DKC1, NHP2, NOP10, PARN, POT1, RPA1, RTEL1, STN1, TERC, TERT, TINF2, WRAP53, and ZCCHC8 | 10 genes implicated: AP3B1, HPS1, HPS3, HPS4, HPS5, HPS6, and less commonly, AP3D1, BLOC1S3, BLOC1S6, and DTNBP1 inherited in an autosomal recessive manner | STING1 | COPA |
References
1. Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J. et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med.; 2022; 205, pp. e18-e47. [DOI: https://dx.doi.org/10.1164/rccm.202202-0399ST] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35486072]
2. Valenzuela, C.; Cottin, V. Epidemiology and real-life experience in progressive pulmonary fibrosis. Curr. Opin. Pulm. Med.; 2022; 28, pp. 407-413. [DOI: https://dx.doi.org/10.1097/MCP.0000000000000908] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35938201]
3. Wijsenbeek, M.; Cottin, V. Spectrum of Fibrotic Lung Diseases. N. Engl. J. Med.; 2020; 383, pp. 958-968. [DOI: https://dx.doi.org/10.1056/NEJMra2005230] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32877584]
4. Wijsenbeek, M.; Suzuki, A.; Maher, T.M. Interstitial lung diseases. Lancet; 2022; 400, pp. 769-786. [DOI: https://dx.doi.org/10.1016/S0140-6736(22)01052-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35964592]
5. Cottin, V.; Hirani, N.A.; Hotchkin, D.L.; Nambiar, A.M.; Ogura, T.; Otaola, M.; Skowasch, D.; Park, J.S.; Poonyagariyagorn, H.K.; Wuyts, W. et al. Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur. Respir. Rev.; 2018; 27, 180076. [DOI: https://dx.doi.org/10.1183/16000617.0076-2018]
6. Pugashetti, J.V.; Adegunsoye, A.; Wu, Z.; Lee, C.T.; Srikrishnan, A.; Ghodrati, S.; Vo, V.; Renzoni, E.A.; Wells, A.U.; Garcia, C.K. et al. Validation of Proposed Criteria for Progressive Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2022; [DOI: https://dx.doi.org/10.1164/rccm.202201-0124OC]
7. Galioto, F.; Palmucci, S.; Astuti, G.M.; Vancheri, A.; Distefano, G.; Tiralongo, F.; Libra, A.; Cusumano, G.; Basile, A.; Vancheri, C. Complications in Idiopathic Pulmonary Fibrosis: Focus on Their Clinical and Radiological Features. Diagnostics; 2020; 10, 450. [DOI: https://dx.doi.org/10.3390/diagnostics10070450]
8. Baratella, E.; Ruaro, B.; Giudici, F.; Wade, B.; Santagiuliana, M.; Salton, F.; Confalonieri, P.; Simbolo, M.; Scarpa, A.; Tollot, S. et al. Evaluation of Correlations between Genetic Variants and High-Resolution Computed Tomography Patterns in Idiopathic Pulmonary Fibrosis. Diagnostics; 2021; 11, 762. [DOI: https://dx.doi.org/10.3390/diagnostics11050762]
9. Kropski, J.A.; Lawson, W.E.; Young, L.R.; Blackwell, T.S. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis. Model Mech.; 2013; 6, pp. 9-17. [DOI: https://dx.doi.org/10.1242/dmm.010736]
10. Borie, R.; Le Guen, P.; Ghanem, M.; Taillé, C.; Dupin, C.; Dieudé, P.; Kannengiesser, C.; Crestani, B. The genetics of interstitial lung diseases. Eur. Respir. Rev.; 2019; 28, 190053. [DOI: https://dx.doi.org/10.1183/16000617.0053-2019]
11. Zhang, D.; Newton, C.A. Familial Pulmonary Fibrosis: Genetic Features and Clinical Implications. Chest; 2021; 160, pp. 1764-1773. [DOI: https://dx.doi.org/10.1016/j.chest.2021.06.037] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34186035]
12. Schimmelpennink, M.C.; Meek, D.B.; Vorselaars, A.D.M.; Langezaal, L.C.M.; van Moorsel, C.H.M.; van der Vis, J.J.; Veltkamp, M.; Grutters, J.C. Characterization of the PF-ILD phenotype in patients with advanced pulmonary sarcoidosis. Respir. Res.; 2022; 23, 169. [DOI: https://dx.doi.org/10.1186/s12931-022-02094-7] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35752806]
13. O’Callaghan, M.; Bonella, F.; McCarthy, C. Unclassifiable, or simply unclassified interstitial lung disease?. Curr. Opin. Pulm. Med.; 2021; 27, pp. 405-413. [DOI: https://dx.doi.org/10.1097/MCP.0000000000000801]
14. Poellinger, A.; Berezowska, S.; Myers, J.L.; Huber, A.; Funke-Chambour, M.; Guler, S.; Geiser, T.; Harari, S.; Caminati, A.; Zompatori, M. et al. The Octopus Sign-A New HRCT Sign in Pulmonary Langerhans Cell Histiocytosis. Diagnostics; 2022; 12, 937. [DOI: https://dx.doi.org/10.3390/diagnostics12040937] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35453983]
15. Katzenstein, A.L.; Mukhopadhyay, S.; Myers, J.L. Diagnosis of usual interstitial pneumonia and distinction from other fibrosing interstitial lung diseases. Hum. Pathol.; 2008; 39, pp. 1275-1294. [DOI: https://dx.doi.org/10.1016/j.humpath.2008.05.009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18706349]
16. Lynch, D.A.; Sverzellati, N.; Travis, W.D.; Brown, K.K.; Colby, T.V.; Galvin, J.R.; Goldin, J.G.; Hansell, D.M.; Inoue, Y.; Johkoh, T. et al. Diagnostic criteria for idiopathic pulmonary fibrosis: A Fleischner Society White Paper. Lancet Respir. Med.; 2018; 6, pp. 138-153. [DOI: https://dx.doi.org/10.1016/S2213-2600(17)30433-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29154106]
17. Adegunsoye, A.; Vij, R.; Noth, I. Integrating Genomics Into Management of Fibrotic Interstitial Lung Disease. Chest; 2019; 155, pp. 1026-1040. [DOI: https://dx.doi.org/10.1016/j.chest.2018.12.011]
18. Newton, C.A.; Batra, K.; Torrealba, J.; Kozlitina, J.; Glazer, C.S.; Aravena, C.; Meyer, K.; Raghu, G.; Collard, H.R.; Garcia, C.K. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive. Eur. Respir. J.; 2016; 48, pp. 1710-1720. [DOI: https://dx.doi.org/10.1183/13993003.00308-2016]
19. Borie, R.; Tabèze, L.; Thabut, G.; Nunes, H.; Cottin, V.; Marchand-Adam, S.; Prevot, G.; Tazi, A.; Cadranel, J.; Mal, H. et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur. Respir. J.; 2016; 48, pp. 1721-1731. [DOI: https://dx.doi.org/10.1183/13993003.02115-2015]
20. Loyd, J.E. Pulmonary fibrosis in families. Am. J. Respir. Cell Mol. Biol.; 2003; 29, pp. S47-S50.
21. Steele, M.P.; Speer, M.C.; Loyd, J.E.; Brown, K.K.; Herron, A.; Slifer, S.H.; Burch, L.H.; Wahidi, M.M.; Phillips, J.A., 3rd; Sporn, T.A. et al. Clinical and pathologic features of familial interstitial pneumonia. Am. J. Respir. Crit. Care Med.; 2005; 172, pp. 1146-1152. [DOI: https://dx.doi.org/10.1164/rccm.200408-1104OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16109978]
22. Calado, R.T.; Young, N.S. Telomere diseases. N. Engl. J. Med.; 2009; 361, pp. 2353-2365. [DOI: https://dx.doi.org/10.1056/NEJMra0903373] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20007561]
23. Tummala, H.; Walne, A.; Dokal, I. The biology and management of dyskeratosis congenita and related disorders of telomeres. Expert Rev. Hematol.; 2022; 15, pp. 685-696. [DOI: https://dx.doi.org/10.1080/17474086.2022.2108784] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35929966]
24. Borie, R.; Kannengiesser, C.; Dupin, C.; Debray, M.P.; Cazes, A.; Crestani, B. Impact of genetic factors on fibrosing interstitial lung diseases. Incidence and clinical presentation in adults. Presse Med.; 2020; 49, 104024. [DOI: https://dx.doi.org/10.1016/j.lpm.2020.104024]
25. Laenger, F.P.; Schwerk, N.; Dingemann, J.; Welte, T.; Auber, B.; Verleden, S.; Ackermann, M.; Mentzer, S.J.; Griese, M.; Jonigk, D. Interstitial lung disease in infancy and early childhood: A clinicopathological primer. Eur. Respir. Rev.; 2022; 31, 210251. [DOI: https://dx.doi.org/10.1183/16000617.0251-2021]
26. Griese, M. Chronic interstitial lung disease in children. Eur. Respir. Rev.; 2018; 27, 170100. [DOI: https://dx.doi.org/10.1183/16000617.0100-2017]
27. Nogee, L.M.; Hamvas, A. The past and future of genetics in pulmonary disease: You can teach an old dog new tricks. Pediatr. Pulmonol.; 2020; 55, pp. 1789-1793. [DOI: https://dx.doi.org/10.1002/ppul.24669]
28. Kaur, A.; Mathai, S.K.; Schwartz, D.A. Genetics in Idiopathic Pulmonary Fibrosis Pathogenesis, Prognosis, and Treatment. Front. Med.; 2017; 4, 154. [DOI: https://dx.doi.org/10.3389/fmed.2017.00154]
29. Allen, R.J.; Guillen-Guio, B.; Oldham, J.M.; Ma, S.F.; Dressen, A.; Paynton, M.L.; Kraven, L.M.; Obeidat, M.; Li, X.; Ng, M. et al. Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2020; 201, pp. 564-574. [DOI: https://dx.doi.org/10.1164/rccm.201905-1017OC]
30. Allen, R.J.; Stockwell, A.; Oldham, J.M.; Guillen-Guio, B.; Schwartz, D.A.; Maher, T.M.; Flores, C.; Noth, I.; Yaspan, B.L.; Jenkins, R.G. et al. Genome-wide association study across five cohorts identifies five novel loci associated with idiopathic pulmonary fibrosis. Thorax; 2022; 77, pp. 829-833. [DOI: https://dx.doi.org/10.1136/thoraxjnl-2021-218577]
31. Moore, C.; Blumhagen, R.Z.; Yang, I.V.; Walts, A.; Powers, J.; Walker, T.; Bishop, M.; Russell, P.; Vestal, B.; Cardwell, J. et al. Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2019; 200, pp. 199-208. [DOI: https://dx.doi.org/10.1164/rccm.201810-1891OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31034279]
32. Manali, E.D.; Kannengiesser, C.; Borie, R.; Ba, I.; Bouros, D.; Markopoulou, A.; Antoniou, K.; Kolilekas, L.; Papaioannou, A.I.; Tzilas, V. et al. Genotype-Phenotype Relationships in Inheritable Idiopathic Pulmonary Fibrosis: A Greek National Cohort Study. Respiration; 2022; 101, pp. 531-543. [DOI: https://dx.doi.org/10.1159/000520657] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35078193]
33. Dressen, A.; Abbas, A.R.; Cabanski, C.; Reeder, J.; Ramalingam, T.R.; Neighbors, M.; Bhangale, T.R.; Brauer, M.J.; Hunkapiller, J.; Reeder, J. et al. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: A candidate gene sequencing study. Lancet Respir. Med.; 2018; 6, pp. 603-614. [DOI: https://dx.doi.org/10.1016/S2213-2600(18)30135-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29891356]
34. Zhang, D.; Newton, C.A.; Wang, B.; Povysil, G.; Noth, I.; Martinez, F.J.; Raghu, G.; Goldstein, D.; Kim Garcia, C. Utility of whole genome sequencing in assessing risk and clinically-relevant outcomes for pulmonary fibrosis. Eur. Respir. J.; 2022; 2200577. [DOI: https://dx.doi.org/10.1183/13993003.00577-2022] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/36028256]
35. Kraven, L.M.; Taylor, A.R.; Molyneaux, P.L.; Maher, T.M.; McDonough, J.E.; Mura, M.; Yang, I.V.; Schwartz, D.A.; Huang, Y.; Noth, I. et al. Cluster analysis of transcriptomic datasets to identify endotypes of idiopathic pulmonary fibrosis. Thorax; 2022; [DOI: https://dx.doi.org/10.1136/thoraxjnl-2021-218563]
36. Juan-Guardela, B.M.; Herazo-Maya, J.D. Immunity, Ciliated Epithelium, and Mortality: Are We Ready to Identify Idiopathic Pulmonary Fibrosis Endotypes With Prognostic Significance?. Chest; 2022; 161, pp. 1440-1441. [DOI: https://dx.doi.org/10.1016/j.chest.2022.02.018]
37. Moss, B.J.; Ryter, S.W.; Rosas, I.O. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. Annu. Rev. Pathol.; 2022; 17, pp. 515-546. [DOI: https://dx.doi.org/10.1146/annurev-pathol-042320-030240]
38. Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers; 2017; 3, 17074. [DOI: https://dx.doi.org/10.1038/nrdp.2017.74]
39. Distler, J.H.W.; Györfi, A.H.; Ramanujam, M.; Whitfield, M.L.; Königshoff, M.; Lafyatis, R. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol.; 2019; 15, pp. 705-730. [DOI: https://dx.doi.org/10.1038/s41584-019-0322-7]
40. Lagares, D.; Hinz, B. Animal and Human Models of Tissue Repair and Fibrosis: An Introduction. Methods Mol. Biol.; 2021; 2299, pp. 277-290. [DOI: https://dx.doi.org/10.1007/978-1-0716-1382-5_20]
41. Vannella, K.M.; Wynn, T.A. Mechanisms of Organ Injury and Repair by Macrophages. Annu. Rev. Physiol.; 2017; 79, pp. 593-617. [DOI: https://dx.doi.org/10.1146/annurev-physiol-022516-034356] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27959618]
42. Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med.; 2012; 18, pp. 1028-1040. [DOI: https://dx.doi.org/10.1038/nm.2807] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22772564]
43. Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med.; 2014; 6, 265sr266. [DOI: https://dx.doi.org/10.1126/scitranslmed.3009337] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25473038]
44. Kobayashi, Y.; Tata, A.; Konkimalla, A.; Katsura, H.; Lee, R.F.; Ou, J.; Banovich, N.E.; Kropski, J.A.; Tata, P.R. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol.; 2020; 22, pp. 934-946. [DOI: https://dx.doi.org/10.1038/s41556-020-0542-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32661339]
45. Leslie, K.O. Idiopathic pulmonary fibrosis may be a disease of recurrent, tractional injury to the periphery of the aging lung: A unifying hypothesis regarding etiology and pathogenesis. Arch. Pathol Lab. Med.; 2012; 136, pp. 591-600. [DOI: https://dx.doi.org/10.5858/arpa.2011-0511-OA] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22136526]
46. Wu, H.; Yu, Y.; Huang, H.; Hu, Y.; Fu, S.; Wang, Z.; Shi, M.; Zhao, X.; Yuan, J.; Li, J. et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell; 2021; 184, pp. 845-846. [DOI: https://dx.doi.org/10.1016/j.cell.2021.01.020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33545039]
47. Froese, A.R.; Shimbori, C.; Bellaye, P.S.; Inman, M.; Obex, S.; Fatima, S.; Jenkins, G.; Gauldie, J.; Ask, K.; Kolb, M. Stretch-induced Activation of Transforming Growth Factor-β1 in Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2016; 194, pp. 84-96. [DOI: https://dx.doi.org/10.1164/rccm.201508-1638OC]
48. Smith, M.L. The histologic diagnosis of usual interstitial pneumonia of idiopathic pulmonary fibrosis. Where we are and where we need to go. Mod. Pathol.; 2022; 35, pp. 8-14. [DOI: https://dx.doi.org/10.1038/s41379-021-00889-5]
49. Tomos, I.P.; Tzouvelekis, A.; Aidinis, V.; Manali, E.D.; Bouros, E.; Bouros, D.; Papiris, S.A. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the ‘bed’ that counts and not ‘the sleepers’. Expert Rev. Respir. Med.; 2017; 11, pp. 299-309. [DOI: https://dx.doi.org/10.1080/17476348.2017.1300533]
50. Selman, M.; Pardo, A. From pulmonary fibrosis to progressive pulmonary fibrosis: A lethal pathobiological jump. Am. J. Physiol. Lung Cell Mol. Physiol.; 2021; 321, pp. L600-L607. [DOI: https://dx.doi.org/10.1152/ajplung.00310.2021]
51. Selman, M.; Pardo, A. When things go wrong: Exploring possible mechanisms driving the progressive fibrosis phenotype in interstitial lung diseases. Eur. Respir. J.; 2021; 58, 2004507. [DOI: https://dx.doi.org/10.1183/13993003.04507-2020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33542060]
52. Thannickal, V.J.; Murthy, M.; Balch, W.E.; Chandel, N.S.; Meiners, S.; Eickelberg, O.; Selman, M.; Pardo, A.; White, E.S.; Levy, B.D. et al. Blue journal conference. Aging and susceptibility to lung disease. Am. J. Respir. Crit. Care Med.; 2015; 191, pp. 261-269. [DOI: https://dx.doi.org/10.1164/rccm.201410-1876PP] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25590812]
53. Moimas, S.; Salton, F.; Kosmider, B.; Ring, N.; Volpe, M.C.; Bahmed, K.; Braga, L.; Rehman, M.; Vodret, S.; Graziani, M.L. et al. miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type II alveolar epithelial cell transdifferentiation. ERJ Open Res.; 2019; 5, pp. 869-880. [DOI: https://dx.doi.org/10.1183/23120541.00138-2019] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31857992]
54. Leavy, O.C.; Ma, S.F.; Molyneaux, P.L.; Maher, T.M.; Oldham, J.M.; Flores, C.; Noth, I.; Jenkins, R.G.; Dudbridge, F.; Wain, L.V. et al. Proportion of Idiopathic Pulmonary Fibrosis Risk Explained by Known Common Genetic Loci in European Populations. Am. J. Respir. Crit. Care Med.; 2021; 203, pp. 775-778. [DOI: https://dx.doi.org/10.1164/rccm.202008-3211LE]
55. Allen, R.J.; Porte, J.; Braybrooke, R.; Flores, C.; Fingerlin, T.E.; Oldham, J.M.; Guillen-Guio, B.; Ma, S.F.; Okamoto, T.; John, A.E. et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: A genome-wide association study. Lancet Respir. Med.; 2017; 5, pp. 869-880. [DOI: https://dx.doi.org/10.1016/S2213-2600(17)30387-9]
56. Witte, J.S.; Visscher, P.M.; Wray, N.R. The contribution of genetic variants to disease depends on the ruler. Nat. Rev. Genet.; 2014; 15, pp. 765-776. [DOI: https://dx.doi.org/10.1038/nrg3786]
57. Copeland, C.R.; Donnelly, E.F.; Mehrad, M.; Ding, G.; Markin, C.R.; Douglas, K.; Wu, P.; Cogan, J.D.; Young, L.R.; Bartholmai, B.J. et al. The Association between Exposures and Disease Characteristics in Familial Pulmonary Fibrosis. Ann. Am. Thorac. Soc.; 2022; [DOI: https://dx.doi.org/10.1513/AnnalsATS.202203-267OC]
58. Hunninghake, G.M.; Goldin, J.G.; Kadoch, M.A.; Kropski, J.A.; Rosas, I.O.; Wells, A.U.; Yadav, R.; Lazarus, H.M.; Abtin, F.G.; Corte, T.J. et al. Detection and Early Referral of Patients With Interstitial Lung Abnormalities: An Expert Survey Initiative. Chest; 2022; 161, pp. 470-482. [DOI: https://dx.doi.org/10.1016/j.chest.2021.06.035]
59. Hunninghake, G.M.; Quesada-Arias, L.D.; Carmichael, N.E.; Martinez Manzano, J.M.; Poli De Frías, S.; Baumgartner, M.A.; DiGianni, L.; Gampala-Sagar, S.N.; Leone, D.A.; Gulati, S. et al. Interstitial Lung Disease in Relatives of Patients with Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2020; 201, pp. 1240-1248. [DOI: https://dx.doi.org/10.1164/rccm.201908-1571OC]
60. Putman, R.K.; Rosas, I.O.; Hunninghake, G.M. Genetics and early detection in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.; 2014; 189, pp. 770-778. [DOI: https://dx.doi.org/10.1164/rccm.201312-2219PP]
61. Salisbury, M.L.; Hewlett, J.C.; Ding, G.; Markin, C.R.; Douglas, K.; Mason, W.; Guttentag, A.; Phillips, J.A., 3rd; Cogan, J.D.; Reiss, S. et al. Development and Progression of Radiologic Abnormalities in Individuals at Risk for Familial Interstitial Lung Disease. Am. J. Respir. Crit. Care Med.; 2020; 201, pp. 1230-1239. [DOI: https://dx.doi.org/10.1164/rccm.201909-1834OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32011901]
62. Kropski, J.A.; Young, L.R.; Cogan, J.D.; Mitchell, D.B.; Lancaster, L.H.; Worrell, J.A.; Markin, C.; Liu, N.; Mason, W.R.; Fingerlin, T.E. et al. Genetic Evaluation and Testing of Patients and Families with Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2017; 195, pp. 1423-1428. [DOI: https://dx.doi.org/10.1164/rccm.201609-1820PP] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27786550]
63. Kropski, J.A.; Pritchett, J.M.; Zoz, D.F.; Crossno, P.F.; Markin, C.; Garnett, E.T.; Degryse, A.L.; Mitchell, D.B.; Polosukhin, V.V.; Rickman, O.B. et al. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am. J. Respir. Crit. Care Med.; 2015; 191, pp. 417-426. [DOI: https://dx.doi.org/10.1164/rccm.201406-1162OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25389906]
64. Borie, R.; Kannengiesser, C.; Sicre de Fontbrune, F.; Gouya, L.; Nathan, N.; Crestani, B. Management of suspected monogenic lung fibrosis in a specialised centre. Eur. Respir. Rev.; 2017; 26, 160122. [DOI: https://dx.doi.org/10.1183/16000617.0122-2016]
65. Borie, R.; Kannengiesser, C.; Gouya, L.; Dupin, C.; Amselem, S.; Ba, I.; Bunel, V.; Bonniaud, P.; Bouvry, D.; Cazes, A. et al. Pilot experience of multidisciplinary team discussion dedicated to inherited pulmonary fibrosis. Orphanet. J. Rare Dis.; 2019; 14, 280. [DOI: https://dx.doi.org/10.1186/s13023-019-1256-5]
66. Eckardt, N.A.; Birchler, J.A.; Meyers, B.C. Focus on plant genetics: Celebrating Gregor Mendel’s 200th birth anniversary. Plant Cell; 2022; 34, pp. 2453-2454. [DOI: https://dx.doi.org/10.1093/plcell/koac123]
67. Davies, K. After the genome: DNA and human disease. Cell; 2001; 104, pp. 465-467. [DOI: https://dx.doi.org/10.1016/S0092-8674(01)00233-1]
68. Jasny, B.R.; Kennedy, D. The human genome. Science; 2001; 291, 1153. [DOI: https://dx.doi.org/10.1126/science.291.5506.1153]
69. Peabody, J.W.; Peabody, J.W., Jr.; Hayes, E.W.; Hayes, E.W., Jr. Idiopathic pulmonary fibrosis; its occurrence in identical twin sisters. Dis. Chest; 1950; 18, pp. 330-344. [DOI: https://dx.doi.org/10.1016/S0096-0217(15)34710-5]
70. Marshall, R.P.; McAnulty, R.J.; Laurent, G.J. The pathogenesis of pulmonary fibrosis: Is there a fibrosis gene?. Int. J. Biochem. Cell Biol.; 1997; 29, pp. 107-120. [DOI: https://dx.doi.org/10.1016/S1357-2725(96)00141-0]
71. Nogee, L.M.; Dunbar, A.E., 3rd; Wert, S.E.; Askin, F.; Hamvas, A.; Whitsett, J.A. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N. Engl. J. Med.; 2001; 344, pp. 573-579. [DOI: https://dx.doi.org/10.1056/NEJM200102223440805] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11207353]
72. Thomas, A.Q.; Lane, K.; Phillips, J., 3rd; Prince, M.; Markin, C.; Speer, M.; Schwartz, D.A.; Gaddipati, R.; Marney, A.; Johnson, J. et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am. J. Respir. Crit. Care Med.; 2002; 165, pp. 1322-1328. [DOI: https://dx.doi.org/10.1164/rccm.200112-123OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11991887]
73. Ono, S.; Tanaka, T.; Ishida, M.; Kinoshita, A.; Fukuoka, J.; Takaki, M.; Sakamoto, N.; Ishimatsu, Y.; Kohno, S.; Hayashi, T. et al. Surfactant protein C G100S mutation causes familial pulmonary fibrosis in Japanese kindred. Eur. Respir. J.; 2011; 38, pp. 861-869. [DOI: https://dx.doi.org/10.1183/09031936.00143610] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21828032]
74. van Moorsel, C.H.; van Oosterhout, M.F.; Barlo, N.P.; de Jong, P.A.; van der Vis, J.J.; Ruven, H.J.; van Es, H.W.; van den Bosch, J.M.; Grutters, J.C. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a dutch cohort. Am. J. Respir. Crit. Care Med.; 2010; 182, pp. 1419-1425. [DOI: https://dx.doi.org/10.1164/rccm.200906-0953OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20656946]
75. Wang, Y.; Kuan, P.J.; Xing, C.; Cronkhite, J.T.; Torres, F.; Rosenblatt, R.L.; DiMaio, J.M.; Kinch, L.N.; Grishin, N.V.; Garcia, C.K. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am. J. Hum. Genet.; 2009; 84, pp. 52-59. [DOI: https://dx.doi.org/10.1016/j.ajhg.2008.11.010] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19100526]
76. Nathan, N.; Giraud, V.; Picard, C.; Nunes, H.; Dastot-Le Moal, F.; Copin, B.; Galeron, L.; De Ligniville, A.; Kuziner, N.; Reynaud-Gaubert, M. et al. Germline SFTPA1 mutation in familial idiopathic interstitial pneumonia and lung cancer. Hum. Mol Genet.; 2016; 25, pp. 1457-1467. [DOI: https://dx.doi.org/10.1093/hmg/ddw014]
77. Shulenin, S.; Nogee, L.M.; Annilo, T.; Wert, S.E.; Whitsett, J.A.; Dean, M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N. Engl. J. Med.; 2004; 350, pp. 1296-1303. [DOI: https://dx.doi.org/10.1056/NEJMoa032178]
78. Bullard, J.E.; Wert, S.E.; Whitsett, J.A.; Dean, M.; Nogee, L.M. ABCA3 mutations associated with pediatric interstitial lung disease. Am. J. Respir. Crit. Care Med.; 2005; 172, pp. 1026-1031. [DOI: https://dx.doi.org/10.1164/rccm.200503-504OC]
79. Kröner, C.; Wittmann, T.; Reu, S.; Teusch, V.; Klemme, M.; Rauch, D.; Hengst, M.; Kappler, M.; Cobanoglu, N.; Sismanlar, T. et al. Lung disease caused by ABCA3 mutations. Thorax; 2017; 72, pp. 213-220. [DOI: https://dx.doi.org/10.1136/thoraxjnl-2016-208649]
80. Manali, E.D.; Legendre, M.; Nathan, N.; Kannengiesser, C.; Coulomb-L’Hermine, A.; Tsiligiannis, T.; Tomos, P.; Griese, M.; Borie, R.; Clement, A. et al. Bi-allelic missense ABCA3 mutations in a patient with childhood ILD who reached adulthood. ERJ Open Res.; 2019; 5, pp. 00066-2019. [DOI: https://dx.doi.org/10.1183/23120541.00066-2019]
81. Galambos, C.; Levy, H.; Cannon, C.L.; Vargas, S.O.; Reid, L.M.; Cleveland, R.; Lindeman, R.; deMello, D.E.; Wert, S.E.; Whitsett, J.A. et al. Pulmonary pathology in thyroid transcription factor-1 deficiency syndrome. Am. J. Respir. Crit. Care Med.; 2010; 182, pp. 549-554. [DOI: https://dx.doi.org/10.1164/rccm.201002-0167CR] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20203240]
82. Hamvas, A.; Deterding, R.R.; Wert, S.E.; White, F.V.; Dishop, M.K.; Alfano, D.N.; Halbower, A.C.; Planer, B.; Stephan, M.J.; Uchida, D.A. et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1. Chest; 2013; 144, pp. 794-804. [DOI: https://dx.doi.org/10.1378/chest.12-2502] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23430038]
83. Borie, R.; Funalot, B.; Epaud, R.; Delestrain, C.; Cazes, A.; Gounant, V.; Frija, J.; Debray, M.P.; Zalcman, G.; Crestani, B. NKX2.1 (TTF1) germline mutation associated with pulmonary fibrosis and lung cancer. ERJ Open Res.; 2021; 7, 00356-2021. [DOI: https://dx.doi.org/10.1183/23120541.00356-2021] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34760996]
84. Nattes, E.; Lejeune, S.; Carsin, A.; Borie, R.; Gibertini, I.; Balinotti, J.; Nathan, N.; Marchand-Adam, S.; Thumerelle, C.; Fauroux, B. et al. Heterogeneity of lung disease associated with NK2 homeobox 1 mutations. Respir. Med.; 2017; 129, pp. 16-23. [DOI: https://dx.doi.org/10.1016/j.rmed.2017.05.014] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28732825]
85. van Moorsel, C.H.M.; van der Vis, J.J.; Grutters, J.C. Genetic disorders of the surfactant system: Focus on adult disease. Eur. Respir. Rev.; 2021; 30, 200085. [DOI: https://dx.doi.org/10.1183/16000617.0085-2020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33597124]
86. Nogee, L.M. Genetic causes of surfactant protein abnormalities. Curr. Opin. Pediatr.; 2019; 31, pp. 330-339. [DOI: https://dx.doi.org/10.1097/MOP.0000000000000751]
87. Lawson, W.E.; Crossno, P.F.; Polosukhin, V.V.; Roldan, J.; Cheng, D.S.; Lane, K.B.; Blackwell, T.R.; Xu, C.; Markin, C.; Ware, L.B. et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: Association with altered surfactant protein processing and herpesvirus infection. Am. J. Physiol. Lung Cell Mol. Physiol.; 2008; 294, pp. L1119-L1126. [DOI: https://dx.doi.org/10.1152/ajplung.00382.2007]
88. Hawkins, A.; Guttentag, S.H.; Deterding, R.; Funkhouser, W.K.; Goralski, J.L.; Chatterjee, S.; Mulugeta, S.; Beers, M.F. A non-BRICHOS SFTPC mutant (SP-CI73T) linked to interstitial lung disease promotes a late block in macroautophagy disrupting cellular proteostasis and mitophagy. Am. J. Physiol. Lung Cell Mol. Physiol.; 2015; 308, pp. L33-L47. [DOI: https://dx.doi.org/10.1152/ajplung.00217.2014]
89. Beers, M.F.; Hawkins, A.; Maguire, J.A.; Kotorashvili, A.; Zhao, M.; Newitt, J.L.; Ding, W.; Russo, S.; Guttentag, S.; Gonzales, L. et al. A nonaggregating surfactant protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling. Traffic; 2011; 12, pp. 1196-1210. [DOI: https://dx.doi.org/10.1111/j.1600-0854.2011.01223.x]
90. Katzen, J.; Wagner, B.D.; Venosa, A.; Kopp, M.; Tomer, Y.; Russo, S.J.; Headen, A.C.; Basil, M.C.; Stark, J.M.; Mulugeta, S. et al. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight; 2019; 4, e126125. [DOI: https://dx.doi.org/10.1172/jci.insight.126125]
91. Beers, M.F.; Mulugeta, S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res.; 2017; 367, pp. 481-493. [DOI: https://dx.doi.org/10.1007/s00441-016-2554-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28025703]
92. Maitra, M.; Wang, Y.; Gerard, R.D.; Mendelson, C.R.; Garcia, C.K. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress. J. Biol. Chem.; 2010; 285, pp. 22103-22113. [DOI: https://dx.doi.org/10.1074/jbc.M110.121467] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20466729]
93. Takezaki, A.; Tsukumo, S.I.; Setoguchi, Y.; Ledford, J.G.; Goto, H.; Hosomichi, K.; Uehara, H.; Nishioka, Y.; Yasutomo, K. A homozygous SFTPA1 mutation drives necroptosis of type II alveolar epithelial cells in patients with idiopathic pulmonary fibrosis. J. Exp. Med.; 2019; 216, pp. 2724-2735. [DOI: https://dx.doi.org/10.1084/jem.20182351]
94. Carré, A.; Szinnai, G.; Castanet, M.; Sura-Trueba, S.; Tron, E.; Broutin-L’Hermite, I.; Barat, P.; Goizet, C.; Lacombe, D.; Moutard, M.L. et al. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: Rescue by PAX8 synergism in one case. Hum. Mol. Genet.; 2009; 18, pp. 2266-2276. [DOI: https://dx.doi.org/10.1093/hmg/ddp162]
95. Kim, K.; Shin, D.; Lee, G.; Bae, H. Loss of SP-A in the Lung Exacerbates Pulmonary Fibrosis. Int. J. Mol. Sci.; 2022; 23, 5292. [DOI: https://dx.doi.org/10.3390/ijms23105292] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35628104]
96. Tomer, Y.; Wambach, J.; Knudsen, L.; Zhao, M.; Rodriguez, L.R.; Murthy, A.; White, F.V.; Venosa, A.; Katzen, J.; Ochs, M. et al. The common ABCA3(E292V) variant disrupts AT2 cell quality control and increases susceptibility to lung injury and aberrant remodeling. Am. J. Physiol. Lung Cell Mol. Physiol.; 2021; 321, pp. L291-L307. [DOI: https://dx.doi.org/10.1152/ajplung.00400.2020]
97. Dickens, J.A.; Rutherford, E.N.; Abreu, S.; Chambers, J.E.; Ellis, M.O.; van Schadewijk, A.; Hiemstra, P.S.; Marciniak, S.J. Novel insights into surfactant protein C trafficking revealed through the study of a pathogenic mutant. Eur. Respir. J.; 2022; 59, 2100267. [DOI: https://dx.doi.org/10.1183/13993003.00267-2021]
98. van Moorsel, C.H.; Hoffman, T.W.; van Batenburg, A.A.; Klay, D.; van der Vis, J.J.; Grutters, J.C. Understanding Idiopathic Interstitial Pneumonia: A Gene-Based Review of Stressed Lungs. Biomed. Res. Int.; 2015; 2015, 304186. [DOI: https://dx.doi.org/10.1155/2015/304186]
99. Legendre, M.; Butt, A.; Borie, R.; Debray, M.P.; Bouvry, D.; Filhol-Blin, E.; Desroziers, T.; Nau, V.; Copin, B.; Dastot-Le Moal, F. et al. Functional assessment and phenotypic heterogeneity of SFTPA1 and SFTPA2 mutations in interstitial lung diseases and lung cancer. Eur. Respir. J.; 2020; 56, 2002806. [DOI: https://dx.doi.org/10.1183/13993003.02806-2020]
100. Griese, M.; Lorenz, E.; Hengst, M.; Schams, A.; Wesselak, T.; Rauch, D.; Wittmann, T.; Kirchberger, V.; Escribano, A.; Schaible, T. et al. Surfactant proteins in pediatric interstitial lung disease. Pediatr Res.; 2016; 79, pp. 34-41. [DOI: https://dx.doi.org/10.1038/pr.2015.173]
101. Salerno, T.; Peca, D.; Menchini, L.; Schiavino, A.; Boldrini, R.; Esposito, F.; Danhaive, O.; Cutrera, R. Surfactant Protein C-associated interstitial lung disease; three different phenotypes of the same SFTPC mutation. Ital. J. Pediatr.; 2016; 42, 23. [DOI: https://dx.doi.org/10.1186/s13052-016-0235-x]
102. van Moorsel, C.H.; Ten Klooster, L.; van Oosterhout, M.F.; de Jong, P.A.; Adams, H.; Wouter van Es, H.; Ruven, H.J.; van der Vis, J.J.; Grutters, J.C. SFTPA2 Mutations in Familial and Sporadic Idiopathic Interstitial Pneumonia. Am. J. Respir. Crit. Care Med.; 2015; 192, pp. 1249-1252. [DOI: https://dx.doi.org/10.1164/rccm.201504-0675LE]
103. Hayasaka, I.; Cho, K.; Akimoto, T.; Ikeda, M.; Uzuki, Y.; Yamada, M.; Nakata, K.; Furuta, I.; Ariga, T.; Minakami, H. Genetic basis for childhood interstitial lung disease among Japanese infants and children. Pediatr. Res.; 2018; 83, pp. 477-483. [DOI: https://dx.doi.org/10.1038/pr.2017.217]
104. Chen, J.; Nong, G.; Liu, X.; Ji, W.; Zhao, D.; Ma, H.; Wang, H.; Zheng, Y.; Shen, K. Genetic basis of surfactant dysfunction in Chinese children: A retrospective study. Pediatr. Pulmonol.; 2019; 54, pp. 1173-1181. [DOI: https://dx.doi.org/10.1002/ppul.24334]
105. Klay, D.; Platenburg, M.; van Rijswijk, R.; Grutters, J.C.; van Moorsel, C.H.M. ABCA3 mutations in adult pulmonary fibrosis patients: A case series and review of literature. Curr. Opin. Pulm. Med.; 2020; 26, pp. 293-301. [DOI: https://dx.doi.org/10.1097/MCP.0000000000000680]
106. Legendre, M.; Darde, X.; Ferreira, M.; Chantot-Bastaraud, S.; Campana, M.; Plantier, L.; Nathan, N.; Amselem, S.; Toutain, A.; Diot, P. et al. The clinical course of interstitial lung disease in an adult patient with an ABCA3 homozygous complex allele under hydroxychloroquine and a review of the literature. Sarcoidosis Vasc. Diffuse Lung Dis.; 2022; 39, e2022019. [DOI: https://dx.doi.org/10.36141/svdld.v39i2.12730]
107. Cho, J.G.; Thakkar, D.; Buchanan, P.; Graf, N.; Wheatley, J. ABCA3 deficiency from birth to adulthood presenting as paediatric interstitial lung disease. Respirol. Case Rep.; 2020; 8, e00633. [DOI: https://dx.doi.org/10.1002/rcr2.633]
108. Tang, X.; Li, H.; Liu, H.; Xu, H.; Yang, H.; Liu, J.; Zhao, S. Etiologic spectrum of interstitial lung diseases in Chinese children older than 2 years of age. Orphanet. J. Rare Dis.; 2020; 15, 25. [DOI: https://dx.doi.org/10.1186/s13023-019-1270-7]
109. Kröner, C.; Reu, S.; Teusch, V.; Schams, A.; Grimmelt, A.C.; Barker, M.; Brand, J.; Gappa, M.; Kitz, R.; Kramer, B.W. et al. Genotype alone does not predict the clinical course of SFTPC deficiency in paediatric patients. Eur. Respir. J.; 2015; 46, pp. 197-206. [DOI: https://dx.doi.org/10.1183/09031936.00129414]
110. Chibbar, R.; Shih, F.; Baga, M.; Torlakovic, E.; Ramlall, K.; Skomro, R.; Cockcroft, D.W.; Lemire, E.G. Nonspecific interstitial pneumonia and usual interstitial pneumonia with mutation in surfactant protein C in familial pulmonary fibrosis. Mod. Pathol.; 2004; 17, pp. 973-980. [DOI: https://dx.doi.org/10.1038/modpathol.3800149]
111. Klay, D.; Hoffman, T.W.; Harmsze, A.M.; Grutters, J.C.; van Moorsel, C.H.M. Systematic review of drug effects in humans and models with surfactant-processing disease. Eur. Respir. Rev.; 2018; 27, 170135. [DOI: https://dx.doi.org/10.1183/16000617.0135-2017]
112. Griese, M.; Kappler, M.; Stehling, F.; Schulze, J.; Baden, W.; Koerner-Rettberg, C.; Carlens, J.; Prenzel, F.; Nährlich, L.; Thalmeier, A. et al. Randomized controlled phase 2 trial of hydroxychloroquine in childhood interstitial lung disease. Orphanet. J. Rare Dis.; 2022; 17, 289. [DOI: https://dx.doi.org/10.1186/s13023-022-02399-2]
113. Cooney, A.L.; Wambach, J.A.; Sinn, P.L.; McCray, P.B., Jr. Gene Therapy Potential for Genetic Disorders of Surfactant Dysfunction. Front. Genome Ed.; 2021; 3, 785829. [DOI: https://dx.doi.org/10.3389/fgeed.2021.785829]
114. Kinting, S.; Höppner, S.; Schindlbeck, U.; Forstner, M.E.; Harfst, J.; Wittmann, T.; Griese, M. Functional rescue of misfolding ABCA3 mutations by small molecular correctors. Hum. Mol. Genet.; 2018; 27, pp. 943-953. [DOI: https://dx.doi.org/10.1093/hmg/ddy011]
115. Eldridge, W.B.; Zhang, Q.; Faro, A.; Sweet, S.C.; Eghtesady, P.; Hamvas, A.; Cole, F.S.; Wambach, J.A. Outcomes of Lung Transplantation for Infants and Children with Genetic Disorders of Surfactant Metabolism. J. Pediatr.; 2017; 184, pp. 157-164.e2. [DOI: https://dx.doi.org/10.1016/j.jpeds.2017.01.017]
116. Armanios, M.Y.; Chen, J.J.; Cogan, J.D.; Alder, J.K.; Ingersoll, R.G.; Markin, C.; Lawson, W.E.; Xie, M.; Vulto, I.; Phillips, J.A., 3rd et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med.; 2007; 356, pp. 1317-1326. [DOI: https://dx.doi.org/10.1056/NEJMoa066157]
117. Tsakiri, K.D.; Cronkhite, J.T.; Kuan, P.J.; Xing, C.; Raghu, G.; Weissler, J.C.; Rosenblatt, R.L.; Shay, J.W.; Garcia, C.K. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl. Acad. Sci. USA; 2007; 104, pp. 7552-7557. [DOI: https://dx.doi.org/10.1073/pnas.0701009104]
118. Vulliamy, T.J.; Walne, A.; Baskaradas, A.; Mason, P.J.; Marrone, A.; Dokal, I. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol. Dis.; 2005; 34, pp. 257-263. [DOI: https://dx.doi.org/10.1016/j.bcmd.2004.12.008]
119. Walne, A.J.; Dokal, I. Telomerase dysfunction and dyskeratosis congenita. Cytotechnology; 2004; 45, pp. 13-22. [DOI: https://dx.doi.org/10.1007/s10616-004-5121-5]
120. Mason, P.J.; Bessler, M. The genetics of dyskeratosis congenita. Cancer Genet.; 2011; 204, pp. 635-645. [DOI: https://dx.doi.org/10.1016/j.cancergen.2011.11.002]
121. Bertuch, A.A. The molecular genetics of the telomere biology disorders. RNA Biol.; 2016; 13, pp. 696-706. [DOI: https://dx.doi.org/10.1080/15476286.2015.1094596] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26400640]
122. Vulliamy, T.J.; Marrone, A.; Knight, S.W.; Walne, A.; Mason, P.J.; Dokal, I. Mutations in dyskeratosis congenita: Their impact on telomere length and the diversity of clinical presentation. Blood; 2006; 107, pp. 2680-2685. [DOI: https://dx.doi.org/10.1182/blood-2005-07-2622] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16332973]
123. Savage, S.A.; Stewart, B.J.; Weksler, B.B.; Baerlocher, G.M.; Lansdorp, P.M.; Chanock, S.J.; Alter, B.P. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol. Dis.; 2006; 37, pp. 134-136. [DOI: https://dx.doi.org/10.1016/j.bcmd.2006.07.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16934504]
124. Marrone, A.; Walne, A.; Tamary, H.; Masunari, Y.; Kirwan, M.; Beswick, R.; Vulliamy, T.; Dokal, I. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood; 2007; 110, pp. 4198-4205. [DOI: https://dx.doi.org/10.1182/blood-2006-12-062851]
125. Heiss, N.S.; Knight, S.W.; Vulliamy, T.J.; Klauck, S.M.; Wiemann, S.; Mason, P.J.; Poustka, A.; Dokal, I. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet.; 1998; 19, pp. 32-38. [DOI: https://dx.doi.org/10.1038/ng0598-32]
126. Revy, P.; Kannengiesser, C.; Bertuch, A.A. Genetics of human telomere biology disorders. Nat. Rev. Genet.; 2022; [DOI: https://dx.doi.org/10.1038/s41576-022-00527-z]
127. Alder, J.K.; Armanios, M. Telomere-mediated lung disease. Physiol. Rev.; 2022; 102, pp. 1703-1720. [DOI: https://dx.doi.org/10.1152/physrev.00046.2021]
128. Borie, R.; Bouvry, D.; Cottin, V.; Gauvain, C.; Cazes, A.; Debray, M.P.; Cadranel, J.; Dieude, P.; Degot, T.; Dominique, S. et al. Regulator of telomere length 1 (RTEL1) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. Eur. Respir. J.; 2019; 53, 1800508. [DOI: https://dx.doi.org/10.1183/13993003.00508-2018]
129. Benyelles, M.; O’Donohue, M.F.; Kermasson, L.; Lainey, E.; Borie, R.; Lagresle-Peyrou, C.; Nunes, H.; Cazelles, C.; Fourrage, C.; Ollivier, E. et al. NHP2 deficiency impairs rRNA biogenesis and causes pulmonary fibrosis and Høyeraal-Hreidarsson syndrome. Hum. Mol. Genet.; 2020; 29, pp. 907-922. [DOI: https://dx.doi.org/10.1093/hmg/ddaa011]
130. Kannengiesser, C.; Manali, E.D.; Revy, P.; Callebaut, I.; Ba, I.; Borgel, A.; Oudin, C.; Haritou, A.; Kolilekas, L.; Malagari, K. et al. First heterozygous NOP10 mutation in familial pulmonary fibrosis. Eur. Respir. J.; 2020; 55, 1902465. [DOI: https://dx.doi.org/10.1183/13993003.02465-2019]
131. Kropski, J.A.; Reiss, S.; Markin, C.; Brown, K.K.; Schwartz, D.A.; Schwarz, M.I.; Loyd, J.E.; Phillips, J.A., 3rd; Blackwell, T.S.; Cogan, J.D. Rare Genetic Variants in PARN Are Associated with Pulmonary Fibrosis in Families. Am. J. Respir. Crit. Care Med.; 2017; 196, pp. 1481-1484. [DOI: https://dx.doi.org/10.1164/rccm.201703-0635LE]
132. Stuart, B.D.; Choi, J.; Zaidi, S.; Xing, C.; Holohan, B.; Chen, R.; Choi, M.; Dharwadkar, P.; Torres, F.; Girod, C.E. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet.; 2015; 47, pp. 512-517. [DOI: https://dx.doi.org/10.1038/ng.3278] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25848748]
133. Gable, D.L.; Gaysinskaya, V.; Atik, C.C.; Talbot, C.C., Jr.; Kang, B.; Stanley, S.E.; Pugh, E.W.; Amat-Codina, N.; Schenk, K.M.; Arcasoy, M.O. et al. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev.; 2019; 33, pp. 1381-1396. [DOI: https://dx.doi.org/10.1101/gad.326785.119] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31488579]
134. Kelich, J.; Aramburu, T.; van der Vis, J.J.; Showe, L.; Kossenkov, A.; van der Smagt, J.; Massink, M.; Schoemaker, A.; Hennekam, E.; Veltkamp, M. et al. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J. Exp. Med.; 2022; 219, e20211681. [DOI: https://dx.doi.org/10.1084/jem.20211681]
135. Stanley, S.E.; Gable, D.L.; Wagner, C.L.; Carlile, T.M.; Hanumanthu, V.S.; Podlevsky, J.D.; Khalil, S.E.; DeZern, A.E.; Rojas-Duran, M.F.; Applegate, C.D. et al. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci. Transl. Med.; 2016; 8, 351ra107. [DOI: https://dx.doi.org/10.1126/scitranslmed.aaf7837]
136. Gaysinskaya, V.; Stanley, S.E.; Adam, S.; Armanios, M. Synonymous Mutation in DKC1 Causes Telomerase RNA Insufficiency Manifesting as Familial Pulmonary Fibrosis. Chest; 2020; 158, pp. 2449-2457. [DOI: https://dx.doi.org/10.1016/j.chest.2020.07.025]
137. Alder, J.K.; Stanley, S.E.; Wagner, C.L.; Hamilton, M.; Hanumanthu, V.S.; Armanios, M. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest; 2015; 147, pp. 1361-1368. [DOI: https://dx.doi.org/10.1378/chest.14-1947]
138. van der Vis, J.J.; van der Smagt, J.J.; Hennekam, F.A.M.; Grutters, J.C.; van Moorsel, C.H.M. Pulmonary Fibrosis and a TERT Founder Mutation With a Latency Period of 300 Years. Chest; 2020; 158, pp. 612-619. [DOI: https://dx.doi.org/10.1016/j.chest.2020.03.069]
139. Sharma, R.; Sahoo, S.S.; Honda, M.; Granger, S.L.; Goodings, C.; Sanchez, L.; Künstner, A.; Busch, H.; Beier, F.; Pruett-Miller, S.M. et al. Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood; 2022; 139, pp. 1039-1051. [DOI: https://dx.doi.org/10.1182/blood.2021011980]
140. M’Kacher, R.; Jaillet, M.; Colicchio, B.; Vasarmidi, E.; Mailleux, A.; Dieterlen, A.; Kannengiesser, C.; Borie, C.; Oudrhiri, N.; Junker, S. et al. Lung Fibroblasts from Idiopathic Pulmonary Fibrosis Patients Harbor Short and Unstable Telomeres Leading to Chromosomal Instability. Biomedicines; 2022; 10, 310. [DOI: https://dx.doi.org/10.3390/biomedicines10020310]
141. Schratz, K.E.; Haley, L.; Danoff, S.K.; Blackford, A.L.; DeZern, A.E.; Gocke, C.D.; Duffield, A.S.; Armanios, M. Cancer spectrum and outcomes in the Mendelian short telomere syndromes. Blood; 2020; 135, pp. 1946-1956. [DOI: https://dx.doi.org/10.1182/blood.2019003264]
142. Schratz, K.E. Extrahematopoietic manifestations of the short telomere syndromes. Hematol. Am. Soc. Hematol. Educ. Program; 2020; 2020, pp. 115-122. [DOI: https://dx.doi.org/10.1182/hematology.2020000170]
143. Wagner, C.L.; Hanumanthu, V.S.; Talbot, C.C., Jr.; Abraham, R.S.; Hamm, D.; Gable, D.L.; Kanakry, C.G.; Applegate, C.D.; Siliciano, J.; Jackson, J.B. et al. Short telomere syndromes cause a primary T cell immunodeficiency. J. Clin. Investig.; 2018; 128, pp. 5222-5234. [DOI: https://dx.doi.org/10.1172/JCI120216]
144. Tomos, I.; Karakatsani, A.; Manali, E.D.; Kottaridi, C.; Spathis, A.; Argentos, S.; Papiris, S.A. Telomere length across different UIP fibrotic-Interstitial Lung Diseases: A prospective Greek case-control study. Pulmonology; 2022; 28, pp. 254-261. [DOI: https://dx.doi.org/10.1016/j.pulmoe.2020.11.005]
145. Alder, J.K.; Chen, J.J.; Lancaster, L.; Danoff, S.; Su, S.C.; Cogan, J.D.; Vulto, I.; Xie, M.; Qi, X.; Tuder, R.M. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl. Acad. Sci. USA; 2008; 105, pp. 13051-13056. [DOI: https://dx.doi.org/10.1073/pnas.0804280105]
146. Alder, J.K.; Hanumanthu, V.S.; Strong, M.A.; DeZern, A.E.; Stanley, S.E.; Takemoto, C.M.; Danilova, L.; Applegate, C.D.; Bolton, S.G.; Mohr, D.W. et al. Diagnostic utility of telomere length testing in a hospital-based setting. Proc. Natl. Acad. Sci. USA; 2018; 115, pp. E2358-E2365. [DOI: https://dx.doi.org/10.1073/pnas.1720427115]
147. Gansner, J.M.; Rosas, I.O.; Ebert, B.L. Pulmonary fibrosis, bone marrow failure, and telomerase mutation. N. Engl. J. Med.; 2012; 366, pp. 1551-1553. [DOI: https://dx.doi.org/10.1056/NEJMc1200999]
148. Armanios, M.; Alder, J.K.; Parry, E.M.; Karim, B.; Strong, M.A.; Greider, C.W. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am. J. Hum. Genet.; 2009; 85, pp. 823-832. [DOI: https://dx.doi.org/10.1016/j.ajhg.2009.10.028]
149. Hong, X.; Wang, L.; Zhang, K.; Liu, J.; Liu, J.P. Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells; 2022; 11, 877. [DOI: https://dx.doi.org/10.3390/cells11050877]
150. Roake, C.M.; Artandi, S.E. Regulation of human telomerase in homeostasis and disease. Nat. Rev. Mol. Cell Biol.; 2020; 21, pp. 384-397. [DOI: https://dx.doi.org/10.1038/s41580-020-0234-z]
151. Tsang, A.R.; Wyatt, H.D.; Ting, N.S.; Beattie, T.L. hTERT mutations associated with idiopathic pulmonary fibrosis affect telomerase activity, telomere length, and cell growth by distinct mechanisms. Aging Cell; 2012; 11, pp. 482-490. [DOI: https://dx.doi.org/10.1111/j.1474-9726.2012.00810.x]
152. Armanios, M.; Blackburn, E.H. The telomere syndromes. Nat. Rev. Genet.; 2012; 13, pp. 693-704. [DOI: https://dx.doi.org/10.1038/nrg3246]
153. Molina-Molina, M.; Borie, R. Clinical implications of telomere dysfunction in lung fibrosis. Curr. Opin. Pulm. Med.; 2018; 24, pp. 440-444. [DOI: https://dx.doi.org/10.1097/MCP.0000000000000506]
154. Salehian, S.; Semple, T.; Pabary, R. Childhood interstitial lung disease: Short lessons from telomeres. Thorax; 2021; 76, pp. 1250-1252. [DOI: https://dx.doi.org/10.1136/thoraxjnl-2021-217479]
155. Alder, J.K.; Cogan, J.D.; Brown, A.F.; Anderson, C.J.; Lawson, W.E.; Lansdorp, P.M.; Phillips, J.A., 3rd; Loyd, J.E.; Chen, J.J.; Armanios, M. Ancestral mutation in telomerase causes defects in repeat addition processivity and manifests as familial pulmonary fibrosis. PLoS Genet.; 2011; 7, e1001352. [DOI: https://dx.doi.org/10.1371/journal.pgen.1001352]
156. Silhan, L.L.; Shah, P.D.; Chambers, D.C.; Snyder, L.D.; Riise, G.C.; Wagner, C.L.; Hellström-Lindberg, E.; Orens, J.B.; Mewton, J.F.; Danoff, S.K. et al. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. Eur. Respir. J.; 2014; 44, pp. 178-187. [DOI: https://dx.doi.org/10.1183/09031936.00060014]
157. Borie, R.; Kannengiesser, C.; Hirschi, S.; Le Pavec, J.; Mal, H.; Bergot, E.; Jouneau, S.; Naccache, J.M.; Revy, P.; Boutboul, D. et al. Severe hematologic complications after lung transplantation in patients with telomerase complex mutations. J. Heart. Lung Transpl.; 2015; 34, pp. 538-546. [DOI: https://dx.doi.org/10.1016/j.healun.2014.11.010]
158. Phillips-Houlbracq, M.; Mal, H.; Cottin, V.; Gauvain, C.; Beier, F.; Sicre de Fontbrune, F.; Sidali, S.; Mornex, J.F.; Hirschi, S.; Roux, A. et al. Determinants of survival after lung transplantation in telomerase-related gene mutation carriers: A retrospective cohort. Am. J. Transpl.; 2022; 22, pp. 1236-1244. [DOI: https://dx.doi.org/10.1111/ajt.16893]
159. Swaminathan, A.C.; Neely, M.L.; Frankel, C.W.; Kelly, F.L.; Petrovski, S.; Durheim, M.T.; Bush, E.; Snyder, L.; Goldstein, D.B.; Todd, J.L. et al. Lung Transplant Outcomes in Patients With Pulmonary Fibrosis With Telomere-Related Gene Variants. Chest; 2019; 156, pp. 477-485. [DOI: https://dx.doi.org/10.1016/j.chest.2019.03.030]
160. Choi, B.; Messika, J.; Courtwright, A.; Mornex, J.F.; Hirschi, S.; Roux, A.; Le Pavec, J.; Quêtant, S.; Froidure, A.; Lazor, R. et al. Airway complications in lung transplant recipients with telomere-related interstitial lung disease. Clin. Transpl.; 2022; 36, e14552. [DOI: https://dx.doi.org/10.1111/ctr.14552]
161. George, G.; Rosas, I.O.; Cui, Y.; McKane, C.; Hunninghake, G.M.; Camp, P.C.; Raby, B.A.; Goldberg, H.J.; El-Chemaly, S. Short telomeres, telomeropathy, and subclinical extrapulmonary organ damage in patients with interstitial lung disease. Chest; 2015; 147, pp. 1549-1557. [DOI: https://dx.doi.org/10.1378/chest.14-0631]
162. Le Pavec, J.; Dauriat, G.; Gazengel, P.; Dolidon, S.; Hanna, A.; Feuillet, S.; Pradere, P.; Crutu, A.; Florea, V.; Boulate, D. et al. Lung transplantation for idiopathic pulmonary fibrosis. Presse Med.; 2020; 49, 104026. [DOI: https://dx.doi.org/10.1016/j.lpm.2020.104026]
163. Popescu, I.; Mannem, H.; Winters, S.A.; Hoji, A.; Silveira, F.; McNally, E.; Pipeling, M.R.; Lendermon, E.A.; Morrell, M.R.; Pilewski, J.M. et al. Impaired Cytomegalovirus Immunity in Idiopathic Pulmonary Fibrosis Lung Transplant Recipients with Short Telomeres. Am. J. Respir. Crit. Care Med.; 2019; 199, pp. 362-376. [DOI: https://dx.doi.org/10.1164/rccm.201805-0825OC]
164. Borie, R.; Kannengiesser, C.; Sicre de Fontbrune, F.; Boutboul, D.; Tabeze, L.; Brunet-Possenti, F.; Lainey, E.; Debray, M.P.; Cazes, A.; Crestani, B. Pneumocystosis revealing immunodeficiency secondary to TERC mutation. Eur. Respir. J.; 2017; 50, 1701443. [DOI: https://dx.doi.org/10.1183/13993003.01443-2017]
165. Raghu, G.; Anstrom, K.J.; King, T.E., Jr.; Lasky, J.A.; Martinez, F.J. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med.; 2012; 366, pp. 1968-1977. [DOI: https://dx.doi.org/10.1056/NEJMoa1113354]
166. Newton, C.A.; Zhang, D.; Oldham, J.M.; Kozlitina, J.; Ma, S.F.; Martinez, F.J.; Raghu, G.; Noth, I.; Garcia, C.K. Telomere Length and Use of Immunosuppressive Medications in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2019; 200, pp. 336-347. [DOI: https://dx.doi.org/10.1164/rccm.201809-1646OC]
167. Reilly, C.R.; Myllymäki, M.; Redd, R.; Padmanaban, S.; Karunakaran, D.; Tesmer, V.; Tsai, F.D.; Gibson, C.J.; Rana, H.Q.; Zhong, L. et al. The clinical and functional effects of TERT variants in myelodysplastic syndrome. Blood; 2021; 138, pp. 898-911. [DOI: https://dx.doi.org/10.1182/blood.2021011075]
168. Parry, E.M.; Alder, J.K.; Qi, X.; Chen, J.J.-L.; Armanios, M. Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase. Blood; 2011; 117, pp. 5607-5611. Erratum in Blood 2016, 127, 1837 [DOI: https://dx.doi.org/10.1182/blood-2010-11-322149]
169. Papiris, S.A.; Tsirigotis, P.; Kannengiesser, C.; Kolilekas, L.; Gkirkas, K.; Papaioannou, A.I.; Revy, P.; Giouleka, P.; Papadaki, G.; Kagouridis, K. et al. Myelodysplastic syndromes and idiopathic pulmonary fibrosis: A dangerous liaison. Respir. Res.; 2019; 20, 182. [DOI: https://dx.doi.org/10.1186/s12931-019-1151-6]
170. Diaz de Leon, A.; Cronkhite, J.T.; Katzenstein, A.L.; Godwin, J.D.; Raghu, G.; Glazer, C.S.; Rosenblatt, R.L.; Girod, C.E.; Garrity, E.R.; Xing, C. et al. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS ONE; 2010; 5, e10680. [DOI: https://dx.doi.org/10.1371/journal.pone.0010680]
171. Schratz, K.E.; Gaysinskaya, V.; Cosner, Z.L.; DeBoy, E.A.; Xiang, Z.; Kasch-Semenza, L.; Florea, L.; Shah, P.D.; Armanios, M. Somatic reversion impacts myelodysplastic syndromes and acute myeloid leukemia evolution in the short telomere disorders. J. Clin. Investig.; 2021; 131, e147598. [DOI: https://dx.doi.org/10.1172/JCI147598]
172. Calado, R.T.; Regal, J.A.; Kleiner, D.E.; Schrump, D.S.; Peterson, N.R.; Pons, V.; Chanock, S.J.; Lansdorp, P.M.; Young, N.S. A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS ONE; 2009; 4, e7926. [DOI: https://dx.doi.org/10.1371/journal.pone.0007926]
173. Calado, R.T.; Brudno, J.; Mehta, P.; Kovacs, J.J.; Wu, C.; Zago, M.A.; Chanock, S.J.; Boyer, T.D.; Young, N.S. Constitutional telomerase mutations are genetic risk factors for cirrhosis. Hepatology; 2011; 53, pp. 1600-1607. [DOI: https://dx.doi.org/10.1002/hep.24173]
174. Nault, J.C.; Ningarhari, M.; Rebouissou, S.; Zucman-Rossi, J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat. Rev. Gastroenterol. Hepatol.; 2019; 16, pp. 544-558. [DOI: https://dx.doi.org/10.1038/s41575-019-0165-3]
175. Rudolph, K.L.; Chang, S.; Millard, M.; Schreiber-Agus, N.; DePinho, R.A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science; 2000; 287, pp. 1253-1258. [DOI: https://dx.doi.org/10.1126/science.287.5456.1253]
176. Gorgy, A.I.; Jonassaint, N.L.; Stanley, S.E.; Koteish, A.; DeZern, A.E.; Walter, J.E.; Sopha, S.C.; Hamilton, J.P.; Hoover-Fong, J.; Chen, A.R. et al. Hepatopulmonary syndrome is a frequent cause of dyspnea in the short telomere disorders. Chest; 2015; 148, pp. 1019-1026. [DOI: https://dx.doi.org/10.1378/chest.15-0825]
177. Hoffman, T.W.; van der Vis, J.J.; Biesma, D.H.; Grutters, J.C.; van Moorsel, C.H.M. Extrapulmonary manifestations of a telomere syndrome in patients with idiopathic pulmonary fibrosis are associated with decreased survival. Respirology; 2022; 27, pp. 959-965. [DOI: https://dx.doi.org/10.1111/resp.14264]
178. Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S. et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am. J. Respir. Crit. Care Med.; 2015; 192, pp. e3-e19. [DOI: https://dx.doi.org/10.1164/rccm.201506-1063ST]
179. Justet, A.; Thabut, G.; Manali, E.; Molina Molina, M.; Kannengiesser, C.; Cadranel, J.; Cottin, V.; Gondouin, A.; Nunes, H.; Magois, E. et al. Safety and efficacy of pirfenidone in patients carrying telomerase complex mutation. Eur. Respir. J.; 2018; 51, 1701875. [DOI: https://dx.doi.org/10.1183/13993003.01875-2017]
180. Justet, A.; Klay, D.; Porcher, R.; Cottin, V.; Ahmad, K.; Molina Molina, M.; Nunes, H.; Reynaud-Gaubert, M.; Naccache, J.M.; Manali, E. et al. Safety and efficacy of pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis and carrying a telomere-related gene mutation. Eur. Respir. J.; 2021; 57, 2003198. [DOI: https://dx.doi.org/10.1183/13993003.03198-2020]
181. Townsley, D.M.; Dumitriu, B.; Liu, D.; Biancotto, A.; Weinstein, B.; Chen, C.; Hardy, N.; Mihalek, A.D.; Lingala, S.; Kim, Y.J. et al. Danazol Treatment for Telomere Diseases. N. Engl. J. Med.; 2016; 374, pp. 1922-1931. [DOI: https://dx.doi.org/10.1056/NEJMoa1515319] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27192671]
182. Mackintosh, J.A.; Pietsch, M.; Lutzky, V.; Enever, D.; Bancroft, S.; Apte, S.H.; Tan, M.; Yerkovich, S.T.; Dickinson, J.L.; Pickett, H.A. et al. TELO-SCOPE study: A randomised, double-blind, placebo-controlled, phase 2 trial of danazol for short telomere related pulmonary fibrosis. BMJ Open Respir. Res.; 2021; 8, e001127. [DOI: https://dx.doi.org/10.1136/bmjresp-2021-001127]
183. Basil, M.C.; Katzen, J.; Engler, A.E.; Guo, M.; Herriges, M.J.; Kathiriya, J.J.; Windmueller, R.; Ysasi, A.B.; Zacharias, W.J.; Chapman, H.A. et al. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell; 2020; 26, pp. 482-502. [DOI: https://dx.doi.org/10.1016/j.stem.2020.03.009]
184. Liu, Y.; Jesus, A.A.; Marrero, B.; Yang, D.; Ramsey, S.E.; Sanchez, G.A.M.; Tenbrock, K.; Wittkowski, H.; Jones, O.Y.; Kuehn, H.S. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med.; 2014; 371, pp. 507-518. [DOI: https://dx.doi.org/10.1056/NEJMoa1312625]
185. David, C.; Frémond, M.L. Lung Inflammation in STING-Associated Vasculopathy with Onset in Infancy (SAVI). Cells; 2022; 11, 318. [DOI: https://dx.doi.org/10.3390/cells11030318]
186. Picard, C.; Thouvenin, G.; Kannengiesser, C.; Dubus, J.C.; Jeremiah, N.; Rieux-Laucat, F.; Crestani, B.; Belot, A.; Thivolet-Béjui, F.; Secq, V. et al. Severe Pulmonary Fibrosis as the First Manifestation of Interferonopathy (TMEM173 Mutation). Chest; 2016; 150, pp. e65-e71. [DOI: https://dx.doi.org/10.1016/j.chest.2016.02.682]
187. Staels, F.; Betrains, A.; Doubel, P.; Willemsen, M.; Cleemput, V.; Vanderschueren, S.; Corveleyn, A.; Meyts, I.; Sprangers, B.; Crow, Y.J. et al. Adult-Onset ANCA-Associated Vasculitis in SAVI: Extension of the Phenotypic Spectrum, Case Report and Review of the Literature. Front. Immunol.; 2020; 11, 575219. [DOI: https://dx.doi.org/10.3389/fimmu.2020.575219]
188. Watkin, L.B.; Jessen, B.; Wiszniewski, W.; Vece, T.J.; Jan, M.; Sha, Y.; Thamsen, M.; Santos-Cortez, R.L.; Lee, K.; Gambin, T. et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet.; 2015; 47, pp. 654-660. [DOI: https://dx.doi.org/10.1038/ng.3279]
189. Steiner, A.; Hrovat-Schaale, K.; Prigione, I.; Yu, C.H.; Laohamonthonkul, P.; Harapas, C.R.; Low, R.R.J.; De Nardo, D.; Dagley, L.F.; Mlodzianoski, M.J. et al. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat. Commun.; 2022; 13, 2321. [DOI: https://dx.doi.org/10.1038/s41467-022-29946-6]
190. Lepelley, A.; Martin-Niclós, M.J.; Le Bihan, M.; Marsh, J.A.; Uggenti, C.; Rice, G.I.; Bondet, V.; Duffy, D.; Hertzog, J.; Rehwinkel, J. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med.; 2020; 217, e20200600. [DOI: https://dx.doi.org/10.1084/jem.20200600]
191. Vece, T.J.; Watkin, L.B.; Nicholas, S.; Canter, D.; Braun, M.C.; Guillerman, R.P.; Eldin, K.W.; Bertolet, G.; McKinley, S.; de Guzman, M. et al. Copa Syndrome: A Novel Autosomal Dominant Immune Dysregulatory Disease. J. Clin. Immunol.; 2016; 36, pp. 377-387. [DOI: https://dx.doi.org/10.1007/s10875-016-0271-8]
192. Volpi, S.; Tsui, J.; Mariani, M.; Pastorino, C.; Caorsi, R.; Sacco, O.; Ravelli, A.; Shum, A.K.; Gattorno, M.; Picco, P. Type I interferon pathway activation in COPA syndrome. Clin. Immunol.; 2018; 187, pp. 33-36. [DOI: https://dx.doi.org/10.1016/j.clim.2017.10.001]
193. Yokoyama, T.; Gochuico, B.R. Hermansky-Pudlak syndrome pulmonary fibrosis: A rare inherited interstitial lung disease. Eur. Respir. Rev.; 2021; 30, 200193. [DOI: https://dx.doi.org/10.1183/16000617.0193-2020]
194. Hermansky, F.; Pudlak, P. Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: Report of two cases with histochemical studies. Blood; 1959; 14, pp. 162-169. [DOI: https://dx.doi.org/10.1182/blood.V14.2.162.162]
195. Oh, J.; Bailin, T.; Fukai, K.; Feng, G.H.; Ho, L.; Mao, J.I.; Frenk, E.; Tamura, N.; Spritz, R.A. Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat. Genet.; 1996; 14, pp. 300-306. [DOI: https://dx.doi.org/10.1038/ng1196-300]
196. Dell’Angelica, E.C.; Shotelersuk, V.; Aguilar, R.C.; Gahl, W.A.; Bonifacino, J.S. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol. Cell; 1999; 3, pp. 11-21. [DOI: https://dx.doi.org/10.1016/S1097-2765(00)80170-7]
197. Anderson, P.D.; Huizing, M.; Claassen, D.A.; White, J.; Gahl, W.A. Hermansky-Pudlak syndrome type 4 (HPS-4): Clinical and molecular characteristics. Hum. Genet.; 2003; 113, pp. 10-17. [DOI: https://dx.doi.org/10.1007/s00439-003-0933-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12664304]
198. Ammann, S.; Schulz, A.; Krägeloh-Mann, I.; Dieckmann, N.M.; Niethammer, K.; Fuchs, S.; Eckl, K.M.; Plank, R.; Werner, R.; Altmüller, J. et al. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood; 2016; 127, pp. 997-1006. [DOI: https://dx.doi.org/10.1182/blood-2015-09-671636]
199. Huizing, M.; Malicdan, M.C.V.; Wang, J.A.; Pri-Chen, H.; Hess, R.A.; Fischer, R.; O’Brien, K.J.; Merideth, M.A.; Gahl, W.A.; Gochuico, B.R. Hermansky-Pudlak syndrome: Mutation update. Hum. Mutat.; 2020; 41, pp. 543-580. [DOI: https://dx.doi.org/10.1002/humu.23968]
200. Hengst, M.; Naehrlich, L.; Mahavadi, P.; Grosse-Onnebrink, J.; Terheggen-Lagro, S.; Skanke, L.H.; Schuch, L.A.; Brasch, F.; Guenther, A.; Reu, S. et al. Hermansky-Pudlak syndrome type 2 manifests with fibrosing lung disease early in childhood. Orphanet J. Rare Dis.; 2018; 13, 42. [DOI: https://dx.doi.org/10.1186/s13023-018-0780-z]
201. Gochuico, B.R.; Huizing, M.; Golas, G.A.; Scher, C.D.; Tsokos, M.; Denver, S.D.; Frei-Jones, M.J.; Gahl, W.A. Interstitial lung disease and pulmonary fibrosis in Hermansky-Pudlak syndrome type 2, an adaptor protein-3 complex disease. Mol. Med.; 2012; 18, pp. 56-64. [DOI: https://dx.doi.org/10.2119/molmed.2011.00198] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22009278]
202. Vicary, G.W.; Vergne, Y.; Santiago-Cornier, A.; Young, L.R.; Roman, J. Pulmonary Fibrosis in Hermansky-Pudlak Syndrome. Ann. Am. Thorac. Soc.; 2016; 13, pp. 1839-1846. [DOI: https://dx.doi.org/10.1513/AnnalsATS.201603-186FR] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27529121]
203. Rouhani, F.N.; Brantly, M.L.; Markello, T.C.; Helip-Wooley, A.; O’Brien, K.; Hess, R.; Huizing, M.; Gahl, W.A.; Gochuico, B.R. Alveolar macrophage dysregulation in Hermansky-Pudlak syndrome type 1. Am. J. Respir. Crit. Care Med.; 2009; 180, pp. 1114-1121. [DOI: https://dx.doi.org/10.1164/rccm.200901-0023OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19729668]
204. Imani, J.; Bodine, S.P.M.; Lamattina, A.M.; Ma, D.D.; Shrestha, S.; Maynard, D.M.; Bishop, K.; Nwokeji, A.; Malicdan, M.C.V.; Testa, L.C. et al. Dysregulated myosin in Hermansky-Pudlak syndrome lung fibroblasts is associated with increased cell motility. Respir. Res.; 2022; 23, 167. [DOI: https://dx.doi.org/10.1186/s12931-022-02083-w]
205. Lyerla, T.A.; Rusiniak, M.E.; Borchers, M.; Jahreis, G.; Tan, J.; Ohtake, P.; Novak, E.K.; Swank, R.T. Aberrant lung structure, composition, and function in a murine model of Hermansky-Pudlak syndrome. Am. J. Physiol. Lung Cell Mol. Physiol.; 2003; 285, pp. L643-L653. [DOI: https://dx.doi.org/10.1152/ajplung.00024.2003]
206. Chiang, P.W.; Oiso, N.; Gautam, R.; Suzuki, T.; Swank, R.T.; Spritz, R.A. The Hermansky-Pudlak syndrome 1 (HPS1) and HPS4 proteins are components of two complexes, BLOC-3 and BLOC-4, involved in the biogenesis of lysosome-related organelles. J. Biol. Chem.; 2003; 278, pp. 20332-20337. [DOI: https://dx.doi.org/10.1074/jbc.M300090200]
207. Atochina-Vasserman, E.N.; Bates, S.R.; Zhang, P.; Abramova, H.; Zhang, Z.; Gonzales, L.; Tao, J.Q.; Gochuico, B.R.; Gahl, W.; Guo, C.J. et al. Early alveolar epithelial dysfunction promotes lung inflammation in a mouse model of Hermansky-Pudlak syndrome. Am. J. Respir. Crit. Care Med.; 2011; 184, pp. 449-458. [DOI: https://dx.doi.org/10.1164/rccm.201011-1882OC]
208. Young, L.R.; Gulleman, P.M.; Bridges, J.P.; Weaver, T.E.; Deutsch, G.H.; Blackwell, T.S.; McCormack, F.X. The alveolar epithelium determines susceptibility to lung fibrosis in Hermansky-Pudlak syndrome. Am. J. Respir. Crit. Care Med.; 2012; 186, pp. 1014-1024. [DOI: https://dx.doi.org/10.1164/rccm.201207-1206OC]
209. Yanagihara, T.; Sato, S.; Upagupta, C.; Kolb, M. What have we learned from basic science studies on idiopathic pulmonary fibrosis?. Eur. Respir. Rev.; 2019; 28, 190029. [DOI: https://dx.doi.org/10.1183/16000617.0029-2019]
210. O’Brien, K.J.; Introne, W.J.; Akal, O.; Akal, T.; Barbu, A.; McGowan, M.P.; Merideth, M.A.; Seward, S.L., Jr.; Gahl, W.A.; Gochuico, B.R. Prolonged treatment with open-label pirfenidone in Hermansky-Pudlak syndrome pulmonary fibrosis. Mol. Genet. Metab.; 2018; 125, pp. 168-173. [DOI: https://dx.doi.org/10.1016/j.ymgme.2018.07.012]
211. Benvenuto, L.; Qayum, S.; Kim, H.; Robbins, H.; Shah, L.; Dimango, A.; Magda, G.; Grewal, H.; Lemaitre, P.; Stanifer, B.P. et al. Lung Transplantation for Pulmonary Fibrosis Associated With Hermansky-Pudlak Syndrome. A Single-center Experience. Transpl. Direct; 2022; 8, e1303. [DOI: https://dx.doi.org/10.1097/TXD.0000000000001303] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35350109]
212. Cetin Gedik, K.; Lamot, L.; Romano, M.; Demirkaya, E.; Piskin, D.; Torreggiani, S.; Adang, L.A.; Armangue, T.; Barchus, K.; Cordova, D.R. et al. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol.; 2022; 74, pp. 735-751. [DOI: https://dx.doi.org/10.1002/art.42087] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35315249]
213. Frémond, M.L.; Legendre, M.; Fayon, M.; Clement, A.; Filhol-Blin, E.; Richard, N.; Berdah, L.; Roullaud, S.; Rice, G.I.; Bondet, V. et al. Use of ruxolitinib in COPA syndrome manifesting as life-threatening alveolar haemorrhage. Thorax; 2020; 75, pp. 92-95. [DOI: https://dx.doi.org/10.1136/thoraxjnl-2019-213892] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31666386]
214. Griese, M.; Seidl, E.; Hengst, M.; Reu, S.; Rock, H.; Anthony, G.; Kiper, N.; Emiralioğlu, N.; Snijders, D.; Goldbeck, L. et al. International management platform for children’s interstitial lung disease (chILD-EU). Thorax; 2018; 73, pp. 231-239. [DOI: https://dx.doi.org/10.1136/thoraxjnl-2017-210519]
215. Schwartz, D.A. Idiopathic pulmonary fibrosis is a complex genetic disorder. Trans. Am. Clin. Climatol. Assoc.; 2016; 127, pp. 34-45.
216. Fingerlin, T.E.; Murphy, E.; Zhang, W.; Peljto, A.L.; Brown, K.K.; Steele, M.P.; Loyd, J.E.; Cosgrove, G.P.; Lynch, D.; Groshong, S. et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet.; 2013; 45, pp. 613-620. [DOI: https://dx.doi.org/10.1038/ng.2609]
217. Korthagen, N.M.; van Moorsel, C.H.; Barlo, N.P.; Kazemier, K.M.; Ruven, H.J.; Grutters, J.C. Association between variations in cell cycle genes and idiopathic pulmonary fibrosis. PLoS ONE; 2012; 7, e30442. [DOI: https://dx.doi.org/10.1371/journal.pone.0030442]
218. Pulkkinen, V.; Bruce, S.; Rintahaka, J.; Hodgson, U.; Laitinen, T.; Alenius, H.; Kinnula, V.L.; Myllärniemi, M.; Matikainen, S.; Kere, J. ELMOD2, a candidate gene for idiopathic pulmonary fibrosis, regulates antiviral responses. FASEB J.; 2010; 24, pp. 1167-1177. [DOI: https://dx.doi.org/10.1096/fj.09-138545]
219. Ahn, M.H.; Park, B.L.; Lee, S.H.; Park, S.W.; Park, J.S.; Kim, D.J.; Jang, A.S.; Park, J.S.; Shin, H.K.; Uh, S.T. et al. A promoter SNP rs4073T>A in the common allele of the interleukin 8 gene is associated with the development of idiopathic pulmonary fibrosis via the IL-8 protein enhancing mode. Respir. Res.; 2011; 12, 73. [DOI: https://dx.doi.org/10.1186/1465-9921-12-73]
220. Noth, I.; Zhang, Y.; Ma, S.F.; Flores, C.; Barber, M.; Huang, Y.; Broderick, S.M.; Wade, M.S.; Hysi, P.; Scuirba, J. et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: A genome-wide association study. Lancet Respir. Med.; 2013; 1, pp. 309-317. [DOI: https://dx.doi.org/10.1016/S2213-2600(13)70045-6]
221. O’Dwyer, D.N.; Armstrong, M.E.; Trujillo, G.; Cooke, G.; Keane, M.P.; Fallon, P.G.; Simpson, A.J.; Millar, A.B.; McGrath, E.E.; Whyte, M.K. et al. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.; 2013; 188, pp. 1442-1450. [DOI: https://dx.doi.org/10.1164/rccm.201304-0760OC]
222. Zhang, D.; Povysil, G.; Kobeissy, P.H.; Li, Q.; Wang, B.; Amelotte, M.; Jaouadi, H.; Newton, C.A.; Maher, T.M.; Molyneaux, P.L. et al. Rare and Common Variants in KIF15 Contribute to Genetic Risk of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2022; 206, pp. 56-69. [DOI: https://dx.doi.org/10.1164/rccm.202110-2439OC]
223. Seibold, M.A.; Wise, A.L.; Speer, M.C.; Steele, M.P.; Brown, K.K.; Loyd, J.E.; Fingerlin, T.E.; Zhang, W.; Gudmundsson, G.; Groshong, S.D. et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med.; 2011; 364, pp. 1503-1512. [DOI: https://dx.doi.org/10.1056/NEJMoa1013660]
224. Horimasu, Y.; Ohshimo, S.; Bonella, F.; Tanaka, S.; Ishikawa, N.; Hattori, N.; Kohno, N.; Guzman, J.; Costabel, U. MUC5B promoter polymorphism in Japanese patients with idiopathic pulmonary fibrosis. Respirology; 2015; 20, pp. 439-444. [DOI: https://dx.doi.org/10.1111/resp.12466]
225. Peljto, A.L.; Selman, M.; Kim, D.S.; Murphy, E.; Tucker, L.; Pardo, A.; Lee, J.S.; Ji, W.; Schwarz, M.I.; Yang, I.V. et al. The MUC5B promoter polymorphism is associated with idiopathic pulmonary fibrosis in a Mexican cohort but is rare among Asian ancestries. Chest; 2015; 147, pp. 460-464. [DOI: https://dx.doi.org/10.1378/chest.14-0867]
226. Juge, P.A.; Lee, J.S.; Ebstein, E.; Furukawa, H.; Dobrinskikh, E.; Gazal, S.; Kannengiesser, C.; Ottaviani, S.; Oka, S.; Tohma, S. et al. MUC5B Promoter Variant and Rheumatoid Arthritis with Interstitial Lung Disease. N. Engl. J. Med.; 2018; 379, pp. 2209-2219. [DOI: https://dx.doi.org/10.1056/NEJMoa1801562]
227. Furusawa, H.; Peljto, A.L.; Walts, A.D.; Cardwell, J.; Molyneaux, P.L.; Lee, J.S.; Fernández Pérez, E.R.; Wolters, P.J.; Yang, I.V.; Schwartz, D.A. Common idiopathic pulmonary fibrosis risk variants are associated with hypersensitivity pneumonitis. Thorax; 2022; 77, pp. 508-510. [DOI: https://dx.doi.org/10.1136/thoraxjnl-2021-217693]
228. Okamoto, T.; Dobrinskikh, E.; Hennessy, C.E.; Liu, N.; Schwarz, M.I.; Evans, C.M.; Fontenot, A.P.; Yang, I.V.; Schwartz, D.A. Muc5b plays a role in the development of inflammation and fibrosis in hypersensitivity pneumonitis induced by Saccharopolyspora rectivirgula. Am. J. Physiol. Lung Cell Mol. Physiol.; 2022; 323, pp. L329-L337. [DOI: https://dx.doi.org/10.1152/ajplung.00061.2022]
229. Ley, B.; Newton, C.A.; Arnould, I.; Elicker, B.M.; Henry, T.S.; Vittinghoff, E.; Golden, J.A.; Jones, K.D.; Batra, K.; Torrealba, J. et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: An observational cohort-control study. Lancet Respir. Med.; 2017; 5, pp. 639-647. [DOI: https://dx.doi.org/10.1016/S2213-2600(17)30216-3]
230. Hobbs, B.D.; Putman, R.K.; Araki, T.; Nishino, M.; Gudmundsson, G.; Gudnason, V.; Eiriksdottir, G.; Zilhao Nogueira, N.R.; Dupuis, J.; Xu, H. et al. Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2019; 200, pp. 1402-1413. [DOI: https://dx.doi.org/10.1164/rccm.201903-0511OC]
231. Mathai, S.K.; Humphries, S.; Kropski, J.A.; Blackwell, T.S.; Powers, J.; Walts, A.D.; Markin, C.; Woodward, J.; Chung, J.H.; Brown, K.K. et al. MUC5B variant is associated with visually and quantitatively detected preclinical pulmonary fibrosis. Thorax; 2019; 74, pp. 1131-1139. [DOI: https://dx.doi.org/10.1136/thoraxjnl-2018-212430]
232. Putman, R.K.; Gudmundsson, G.; Araki, T.; Nishino, M.; Sigurdsson, S.; Gudmundsson, E.F.; Eiríksdottír, G.; Aspelund, T.; Ross, J.C.; San José Estépar, R. et al. The MUC5B promoter polymorphism is associated with specific interstitial lung abnormality subtypes. Eur. Respir. J.; 2017; 50, 1700537. [DOI: https://dx.doi.org/10.1183/13993003.00537-2017]
233. Stancil, I.T.; Michalski, J.E.; Davis-Hall, D.; Chu, H.W.; Park, J.A.; Magin, C.M.; Yang, I.V.; Smith, B.J.; Dobrinskikh, E.; Schwartz, D.A. Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional. Nat. Commun.; 2021; 12, 4566. [DOI: https://dx.doi.org/10.1038/s41467-021-24853-8]
234. Gally, F.; Sasse, S.K.; Kurche, J.S.; Gruca, M.A.; Cardwell, J.H.; Okamoto, T.; Chu, H.W.; Hou, X.; Poirion, O.B.; Buchanan, J. et al. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight; 2021; 6, e144294. [DOI: https://dx.doi.org/10.1172/jci.insight.144294]
235. Hancock, L.A.; Hennessy, C.E.; Solomon, G.M.; Dobrinskikh, E.; Estrella, A.; Hara, N.; Hill, D.B.; Kissner, W.J.; Markovetz, M.R.; Grove Villalon, D.E. et al. Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice. Nat. Commun.; 2018; 9, 5363. [DOI: https://dx.doi.org/10.1038/s41467-018-07768-9]
236. Schwartz, D.A. Idiopathic Pulmonary Fibrosis Is a Genetic Disease Involving Mucus and the Peripheral Airways. Ann. Am. Thorac. Soc.; 2018; 15, pp. S192-S197. [DOI: https://dx.doi.org/10.1513/AnnalsATS.201802-144AW]
237. Helling, B.A.; Gerber, A.N.; Kadiyala, V.; Sasse, S.K.; Pedersen, B.S.; Sparks, L.; Nakano, Y.; Okamoto, T.; Evans, C.M.; Yang, I.V. et al. Regulation of MUC5B Expression in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol.; 2017; 57, pp. 91-99. [DOI: https://dx.doi.org/10.1165/rcmb.2017-0046OC]
238. Molyneaux, P.L.; Cox, M.J.; Willis-Owen, S.A.; Mallia, P.; Russell, K.E.; Russell, A.M.; Murphy, E.; Johnston, S.L.; Schwartz, D.A.; Wells, A.U. et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.; 2014; 190, pp. 906-913. [DOI: https://dx.doi.org/10.1164/rccm.201403-0541OC]
239. Schwartz, D.A.; Blumhagen, R.Z.; Fingerlin, T.E. Evolution of the Gain-of-Function MUC5B Promoter Variant. Am. J. Respir. Crit. Care Med.; 2022; 206, pp. 1189-1191. [DOI: https://dx.doi.org/10.1164/rccm.202207-1300ED]
240. Borie, R.; Cardwell, J.; Konigsberg, I.R.; Moore, C.M.; Zhang, W.; Sasse, S.K.; Gally, F.; Dobrinskikh, E.; Walts, A.; Powers, J. et al. Colocalization of Gene Expression and DNA Methylation with Genetic Risk Variants Supports Functional Roles of MUC5B and DSP in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2022; 206, pp. 1259-1270. [DOI: https://dx.doi.org/10.1164/rccm.202110-2308OC]
241. Kim, E.; Mathai, S.K.; Stancil, I.T.; Ma, X.; Hernandez-Gutierrez, A.; Becerra, J.N.; Marrero-Torres, E.; Hennessy, C.E.; Hatakka, K.; Wartchow, E.P. et al. Aberrant Multiciliogenesis in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol.; 2022; 67, pp. 188-200. [DOI: https://dx.doi.org/10.1165/rcmb.2021-0554OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35608953]
242. Mota, P.C.; Soares, M.L.; Vasconcelos, C.D.; Ferreira, A.C.; Lima, B.A.; Manduchi, E.; Moore, J.H.; Melo, N.; Novais-Bastos, H.; Pereira, J.M. et al. Predictive value of common genetic variants in idiopathic pulmonary fibrosis survival. J. Mol. Med.; 2022; 100, pp. 1341-1353. [DOI: https://dx.doi.org/10.1007/s00109-022-02242-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35986225]
243. Chung, J.H.; Peljto, A.L.; Chawla, A.; Talbert, J.L.; McKean, D.F.; Rho, B.H.; Fingerlin, T.E.; Schwarz, M.I.; Schwartz, D.A.; Lynch, D.A. CT Imaging Phenotypes of Pulmonary Fibrosis in the MUC5B Promoter Site Polymorphism. Chest; 2016; 149, pp. 1215-1222. [DOI: https://dx.doi.org/10.1016/j.chest.2015.11.009]
244. Chung, J.H.; Chawla, A.; Peljto, A.L.; Cool, C.D.; Groshong, S.D.; Talbert, J.L.; McKean, D.F.; Brown, K.K.; Fingerlin, T.E.; Schwarz, M.I. et al. CT scan findings of probable usual interstitial pneumonitis have a high predictive value for histologic usual interstitial pneumonitis. Chest; 2015; 147, pp. 450-459. [DOI: https://dx.doi.org/10.1378/chest.14-0976]
245. Peljto, A.L.; Zhang, Y.; Fingerlin, T.E.; Ma, S.F.; Garcia, J.G.; Richards, T.J.; Silveira, L.J.; Lindell, K.O.; Steele, M.P.; Loyd, J.E. et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA; 2013; 309, pp. 2232-2239. [DOI: https://dx.doi.org/10.1001/jama.2013.5827]
246. van der Vis, J.J.; Snetselaar, R.; Kazemier, K.M.; ten Klooster, L.; Grutters, J.C.; van Moorsel, C.H. Effect of Muc5b promoter polymorphism on disease predisposition and survival in idiopathic interstitial pneumonias. Respirology; 2016; 21, pp. 712-717. [DOI: https://dx.doi.org/10.1111/resp.12728]
247. Hatabu, H.; Hunninghake, G.M.; Richeldi, L.; Brown, K.K.; Wells, A.U.; Remy-Jardin, M.; Verschakelen, J.; Nicholson, A.G.; Beasley, M.B.; Christiani, D.C. et al. Interstitial lung abnormalities detected incidentally on CT: A Position Paper from the Fleischner Society. Lancet Respir. Med.; 2020; 8, pp. 726-737. [DOI: https://dx.doi.org/10.1016/S2213-2600(20)30168-5]
248. Araki, T.; Putman, R.K.; Hatabu, H.; Gao, W.; Dupuis, J.; Latourelle, J.C.; Nishino, M.; Zazueta, O.E.; Kurugol, S.; Ross, J.C. et al. Development and Progression of Interstitial Lung Abnormalities in the Framingham Heart Study. Am. J. Respir. Crit. Care Med.; 2016; 194, pp. 1514-1522. [DOI: https://dx.doi.org/10.1164/rccm.201512-2523OC]
249. Juge, P.A.; Granger, B.; Debray, M.P.; Ebstein, E.; Louis-Sidney, F.; Kedra, J.; Doyle, T.J.; Borie, R.; Constantin, A.; Combe, B. et al. A Risk Score to Detect Subclinical Rheumatoid Arthritis-Associated Interstitial Lung Disease. Arthritis Rheumatol.; 2022; 74, pp. 1755-1765. [DOI: https://dx.doi.org/10.1002/art.42162]
250. Bonella, F.; Campo, I.; Zorzetto, M.; Boerner, E.; Ohshimo, S.; Theegarten, D.; Taube, C.; Costabel, U. Potential clinical utility of MUC5B und TOLLIP single nucleotide polymorphisms (SNPs) in the management of patients with IPF. Orphanet J. Rare Dis.; 2021; 16, 111. [DOI: https://dx.doi.org/10.1186/s13023-021-01750-3]
251. Oldham, J.M.; Ma, S.F.; Martinez, F.J.; Anstrom, K.J.; Raghu, G.; Schwartz, D.A.; Valenzi, E.; Witt, L.; Lee, C.; Vij, R. et al. TOLLIP, MUC5B, and the Response to N-Acetylcysteine among Individuals with Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med.; 2015; 192, pp. 1475-1482. [DOI: https://dx.doi.org/10.1164/rccm.201505-1010OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26331942]
252. Bush, A.; Pabary, R. Pulmonary alveolarproteinosis in children. Breathe; 2020; 16, 200001. [DOI: https://dx.doi.org/10.1183/20734735.0001-2020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32684993]
253. Has, C.; Spartà, G.; Kiritsi, D.; Weibel, L.; Moeller, A.; Vega-Warner, V.; Waters, A.; He, Y.; Anikster, Y.; Esser, P. et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med.; 2012; 366, pp. 1508-1514. [DOI: https://dx.doi.org/10.1056/NEJMoa1110813] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22512483]
254. Carlens, J.; Johnson, K.T.; Bush, A.; Renz, D.; Hehr, U.; Laenger, F.; Hogg, C.; Wetzke, M.; Schwerk, N.; Rayment, J.H. Heterogenous Disease Course and Long-term Outcome of Children’s Interstitial Lung Disease Related to Filamin A Gene Variants. Ann. Am. Thorac. Soc.; 2022; [DOI: https://dx.doi.org/10.1513/AnnalsATS.202202-142OC] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35767027]
255. Griese, M. Etiologic Classification of Diffuse Parenchymal (Interstitial) Lung Diseases. J. Clin. Med.; 2022; 11, 1747. [DOI: https://dx.doi.org/10.3390/jcm11061747]
256. Bush, A. Paediatric interstitial lung disease: Not just kid’s stuff. Eur. Respir. J.; 2004; 24, pp. 521-523. [DOI: https://dx.doi.org/10.1183/09031936.04.00081704]
257. Borie, R.; Kannengiesser, C.; Antoniou, K.; Bonella, F.; Crestani, B.; Fabre, A.; Froidure, A.; Galvin, L.; Griese, M.; Grutters, J.C. et al. European Respiratory Society Statement on Familial Pulmonary Fibrosis. Eur. Respir. J.; 2022; in press [DOI: https://dx.doi.org/10.1183/13993003.01383-2022]
258. Koucký, V.; Pohunek, P.; Vašáková, M.; Bush, A. Transition of patients with interstitial lung disease from paediatric to adult care. ERJ Open Res.; 2021; 7, pp. 00964-2020. [DOI: https://dx.doi.org/10.1183/23120541.00964-2020]
259. Newton, C.A.; Oldham, J.M.; Applegate, C.; Carmichael, N.; Powell, K.; Dilling, D.; Schmidt, S.L.; Scholand, M.B.; Armanios, M.; Garcia, C.K. et al. The Role of Genetic Testing in Pulmonary Fibrosis: A Perspective From the Pulmonary Fibrosis Foundation Genetic Testing Work Group. Chest; 2022; 162, pp. 394-405. [DOI: https://dx.doi.org/10.1016/j.chest.2022.03.023]
260. Rosas, I.O.; Ren, P.; Avila, N.A.; Chow, C.K.; Franks, T.J.; Travis, W.D.; McCoy, J.P., Jr.; May, R.M.; Wu, H.P.; Nguyen, D.M. et al. Early interstitial lung disease in familial pulmonary fibrosis. Am. J. Respir. Crit. Care Med.; 2007; 176, pp. 698-705. [DOI: https://dx.doi.org/10.1164/rccm.200702-254OC]
261. Fernandez, B.A.; Fox, G.; Bhatia, R.; Sala, E.; Noble, B.; Denic, N.; Fernandez, D.; Duguid, N.; Dohey, A.; Kamel, F. et al. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: Clinical and genetic features. Respir. Res.; 2012; 13, 64. [DOI: https://dx.doi.org/10.1186/1465-9921-13-64]
262. Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet; 2017; 389, pp. 1941-1952. [DOI: https://dx.doi.org/10.1016/S0140-6736(17)30866-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28365056]
263. Cottin, V.; Cordier, J.F. Velcro crackles: The key for early diagnosis of idiopathic pulmonary fibrosis?. Eur. Respir. J.; 2012; 40, pp. 519-521. [DOI: https://dx.doi.org/10.1183/09031936.00001612] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22941541]
264. Cottin, V.; Richeldi, L. Neglected evidence in idiopathic pulmonary fibrosis and the importance of early diagnosis and treatment. Eur. Respir. Rev.; 2014; 23, pp. 106-110. [DOI: https://dx.doi.org/10.1183/09059180.00008613] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24591667]
265. Spagnolo, P.; Ryerson, C.J.; Putman, R.; Oldham, J.; Salisbury, M.; Sverzellati, N.; Valenzuela, C.; Guler, S.; Jones, S.; Wijsenbeek, M. et al. Early diagnosis of fibrotic interstitial lung disease: Challenges and opportunities. Lancet Respir. Med.; 2021; 9, pp. 1065-1076. [DOI: https://dx.doi.org/10.1016/S2213-2600(21)00017-5]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Background: Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. Aim: The aim of the present study is to overview the clinical significance of genetics in IPF. Perspective: It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a “a sporadic entity of the elderly, limited to the lungs” and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and “faces” in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. Conclusion: By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
2 Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France; INSERM UMR 1152, Université de Paris, 75018 Paris, France
3 Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
4 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
5 Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
6 Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
7 Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
8 Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
9 Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France