Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, protecting important objects by simulating animal camouflage has been widely employed in many fields. Therefore, camouflaged object detection (COD) technology has emerged. COD is more difficult to achieve than traditional object detection techniques due to the high degree of fusion of objects camouflaged with the background. In this paper, we strive to more accurately and efficiently identify camouflaged objects. Inspired by the use of magnifiers to search for hidden objects in pictures, we propose a COD network that simulates the observation effect of a magnifier called the MAGnifier Network (MAGNet). Specifically, our MAGNet contains two parallel modules: the ergodic magnification module (EMM) and the attention focus module (AFM). The EMM is designed to mimic the process of a magnifier enlarging an image, and AFM is used to simulate the observation process in which human attention is highly focused on a particular region. The two sets of output camouflaged object maps were merged to simulate the observation of an object by a magnifier. In addition, a weighted key point area perception loss function, which is more applicable to COD, was designed based on two modules to give greater attention to the camouflaged object. Extensive experiments demonstrate that compared with 19 cutting-edge detection models, MAGNet can achieve the best comprehensive effect on eight evaluation metrics in the public COD dataset. Additionally, compared to other COD methods, MAGNet has lower computational complexity and faster segmentation. We also validated the model’s generalization ability on a military camouflaged object dataset constructed in-house. Finally, we experimentally explored some extended applications of COD.

Details

Title
MAGNet: A Camouflaged Object Detection Network Simulating the Observation Effect of a Magnifier
Author
Jiang, Xinhao; Cai, Wei  VIAFID ORCID Logo  ; Zhang, Zhili; Jiang, Bo; Yang, Zhiyong; Wang, Xin
First page
1804
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756686531
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.