Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Food waste (FW) has traditionally been disposed by incineration or landfilling; however, it can be converted to green methane (GM) via anaerobic digestion, and GM can be used as fuel for light-duty natural gas vehicles (LDNGVs). A lifecycle assessment (LCA) of FW-based GM production and LDNGV operation in China, a new scenario, was performed. The LCA results were compared with those for the conventional FW treatment, where a “well-to-wheel” system boundary including FW collection, GM production from FW, and vehicle manufacturing, operation, and disposal was defined. The LCA results showed that the global warming impacts of the new FW scenario are 44.3% lower than those of the conventional option. The fine particulate matter formation impact of the new FW scenario was dominated by the displacement effect of electricity supply to anaerobic digestion, followed by CO2 adsorption by the primary source. The sensitivity analysis showed that hydroelectric power as the best primary source for electricity supply could substantially reduce both global warming and FRS in the new scenario. In the short term, the proposed FW scenario could be a feasible option for achieving sustainable society by minimizing environmental impacts of FW treatment.

Details

Title
Green Methane as a Future Fuel for Light-Duty Vehicles
Author
Byun, Jaewon 1 ; Han, Jeehoon 2   VIAFID ORCID Logo 

 Petrochemical Material Engineering Department, Chonnam National University, Yeosu 59631, Republic of Korea 
 Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea 
First page
680
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23115637
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756698516
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.