Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to investigate the effects of lactic acid bacteria (LAB) inoculants on the fermentation quality, microbial compositions, and predicted functional profiles of forage oat. The forage oat was inoculated with distilled water, Lentilactobacillus buchneri (LB), and Lactiplantibacillus plantarum (LP) as the control (CON), LB and LP treatments, respectively, and the addition of Lentilactobacillus buchneri (LB) or Lactiplantibacillus plantarum (LP) resulted in 1 × 106 colony-forming units/g of fresh weight. After 30 days of fermentation, the lowest pH (4.23) and the lowest content of ammoniacal nitrogen (NH3-N) in dry matter (DM, 4.39%) were observed in the LP treatment. Interestingly, there was a significant (p < 0.05) difference in lactic acid (LA) concentration among the three treatments. The LP treatment had the highest lactate concentration (7.49% DM). At the same time, a markedly (p < 0.05) elevated acetic acid (AA) concentration (2.48% DM) was detected in the LB treatment. The Shannon and Chao1 indexes of bacterial and fungal communities in all the silage samples decreased compared to those in the fresh materials (FM). Proteobacteria was the dominant phylum in the FM group and shifted from Proteobacteria to Firmicutes after ensiling. Lactobacillus (64.87%) and Weissella (18.93%) were the predominant genera in the CON, whereas Lactobacillus dominated the fermentation process in the LB (94.65%) and LP (99.60%) treatments. For the fungal community structure, the major genus was Apiotrichum (21.65% and 60.66%) in the FM and CON groups after 30 days of fermentation. Apiotrichum was the most predominant in the LB and LP treatments, accounting for 52.54% and 34.47%, respectively. The genera Lactococcus, Pediococcus, and Weissella were negatively associated with the LA content. The genus Ustilago and Bulleromyces were positively associated with the LA content. These results suggest that the addition of LAB regulated the microbial community in oat silage, which influenced the ensiling products, and LP was more beneficial for decreasing the pH and NH3-N and increasing the LA concentration than LB in forage oat silage.

Details

Title
Fermentation Characteristics, Microbial Compositions, and Predicted Functional Profiles of Forage Oat Ensiled with Lactiplantibacillus plantarum or Lentilactobacillus buchneri
Author
Xiao, Yanzi 1 ; Sun, Lin 2   VIAFID ORCID Logo  ; Wang, Zhijun 3 ; Wang, Wei 4 ; Xin, Xiaoping 5 ; Xu, Lijun 5 ; Du, Shuai 6 

 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Hulunber Grassland Ecosystem Observation and Research Station, Beijing 100081, China; College of Agriculture and Forestry, Hulunbuir University, Hulunber 021000, China 
 Inner Mongolia Academy of Agricultural Science & Animal Husbandry, Hohhot 010031, China 
 Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Ministry of Education, Hohhot 010019, China 
 College of Agriculture and Forestry, Hulunbuir University, Hulunber 021000, China 
 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Hulunber Grassland Ecosystem Observation and Research Station, Beijing 100081, China 
 National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China 
First page
707
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23115637
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756698523
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.