Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, an underground pipe gallery was taken as the research subject to explore the influence of nitrogen injection flow rate and pipe diameter on the fire extinguishing efficiency in an underground narrow confined space. A liquid nitrogen fire extinguishing test system for the underground narrow confined space was built. The fire extinguishing time, flame height, temperature, and oxygen concentration under different conditions were recorded by liquid nitrogen fire extinguishing tests, and the variations in the characteristics of these data were analyzed. Furthermore, the fire suppression factor, cooling factor, and asphyxiation factor were introduced to quantify the influence of the nitrogen flow rate and pipe diameter on extinguishing efficiency. According to the results, the fire was effectively extinguished by liquid nitrogen in the underground confined space through asphyxiation as the main fire extinguishing mechanism, and the extinguishing time was about 95.5% less than that in the self-extinguishing test. Although the fire suppression efficiency is positively related to the nitrogen injection flow, the asphyxiation efficiency can be reduced when the flow rate is excessive or too weak. Additionally, the asphyxiation factor and fire suppression factor are highly sensitive to the injection pipe diameter. Therefore, a valuable reference is provided in this study for promoting the future engineering application of liquid nitrogen fire extinguishment.

Details

Title
An Experimental Investigation of the Influence of Flow and Pipe Diameter on the Fire Extinguishing Efficiency of Nitrogen Injection in a Narrow Confined Underground Space
Author
Zhang, Guowei 1 ; Guo, Dong 2 ; Li, Bin 2 ; Zhang, Zhiwei 2 ; Yuan, Diping 3 

 School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Shenzhen Research Institute, China University of Mining and Technology, Shenzhen 518000, China 
 School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China 
 Shenzhen Research Institute, China University of Mining and Technology, Shenzhen 518000, China 
First page
202
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25716255
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756698740
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.