Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For decades, underwater vehicles have been performing underwater operations, which are critical to the development and upgrading of underwater robots. With the advancement of technology, various types of robots have been developed. The underwater robotic snake is a bioinspired addition to the family of underwater robotic vehicles. In this paper, we propose an innovative underwater snake robot actuated by rigid propulsions and soft joints, which can improve the swimming efficiency and flexibility of the robot and reduce the probability of collision leading to damage. Existing math models of robotic snakes typically incorporate only planar motion, rarely considering spatial motion. So, we formulate a complete three-dimensional dynamic model for the robotic snake, which is extended by deriving expressions for the geometric Jacobians. This modeling approach is well suited since it provides compact matrix expressions and easy implementation. We use the constant curvature method to describe the configuration of the soft joint, use the Lagrangian method to obtain its dynamic characteristics, and focus on deriving the visco-hyperelastic mechanical energy of the soft material. Next, the local dynamics of soft members are extended as a nonholonomic constraint form for modeling the snake robot. Finally, the multi-modal swimming behavior of the robot has been verified by simulations, including forward and backward rectilinear motion, yaw turning, pitch motion, and spiral rising motion. The overall results demonstrate the effectiveness and the versatility of the developed dynamic model in the prediction of the robot trajectory, position, orientation, and velocity.

Details

Title
Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation
Author
Zhang, Junhao 1   VIAFID ORCID Logo  ; Chen, Yinglong 1   VIAFID ORCID Logo  ; Liu, Yi 2 ; Gong, Yongjun 3 

 Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China 
 JiuJiang 707 SCI&TECH Co., Ltd., Jiujiang 332007, China 
 National Center for International Research of Subsea Engineering Technology and Equipment, Dalian Maritime University, Dalian 116000, China 
First page
1914
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756732796
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.