Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Closed-cell aluminum foam has a porous structure and metal properties due to its unique composition. As a structural material, it has the advantages of being lightweight, having a large specific surface area, and having high specific strength and stiffness. As a functional material, it can be used for sound and noise reduction, heat insulation, electromagnetic shielding, damping, and energy absorption, but it also has poor mechanical properties and poor surface flatness, and can be easily corroded. Considering the abovementioned problems, researchers have gradually extended their research on foam materials. Under the research of many international scholars, studies have shifted from simple aluminum foam preparation to improving and optimizing aluminum foam composite structures (AFCSs). From the perspective of development prospects, AFCSs have better application prospects than single aluminum foam. In this paper, the research progress on the preparation technology of AFCSs in recent years was reviewed based on the performance enhancement mechanism of aluminum matrix composites and the structural characteristics of aluminum foam. The morphology and pore structures of closed-cell AFCSs under different preparation methods were summarized. However, due to the limitations of existing experimental conditions, this paper only considered the advantages and disadvantages of AFCS preparation methods. The improvement of AFCS preparation technology, the development of the potential properties of AFCSs, and the promotion of AFCS industrial applications were also considered.

Details

Title
Research Progress in the Preparation of Aluminum Foam Composite Structures
Author
Zhang, Junshan 1   VIAFID ORCID Logo  ; An, Yukun 2 ; Ma, Haoyuan 1 

 School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China 
 School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China; Shandong Hongyu Ventilator Limited Company, Zibo 255300, China 
First page
2047
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756756733
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.