Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A three-dimensional convective heat transfer model of a microchannel pin-fin hybrid heat sink was established. Considering the non-uniform heat generation of 3D stacked chips, the splitting distance of pin-fins was optimized by minimizing the maximum heat sink temperature under different heat fluxes in the hotspot, the Reynolds numbers at the entrance of the microchannel, and the proportions of the pin-fin volume. The average pressure drop and the performance evaluation criteria were considered to be the performance indexes to analyze the influence of each parameter on the flow performance and comprehensive performance, respectively. The results showed that the maximum temperature of the hybrid heat sink attained a minimum value with an increase in the splitting distance. The average pressure drop in the center passage of the microchannel first increased and then decreased. Furthermore, the optimal value could not be simultaneously obtained with the maximum temperature. Therefore, it should be comprehensively considered in the optimization design. The heat flux in the hotspot was positively correlated with the maximum heat sink temperature. However, it had no effect on the flow pressure drop. When the Reynolds number and the pin-fin diameter increased, the maximum heat sink temperature decreased and the average pressure drop of the microchannel increased. The comprehensive performance of the hybrid heat sink was not good at small Reynolds numbers, but it significantly improved as the Reynolds number gradually increased. Choosing a bigger pin-fin diameter and the corresponding optimal value of the splitting distance in a given Reynolds number would further improve the comprehensive performance of a hybrid heat sink.

Details

Title
Thermal–Hydrodynamic Behavior and Design of a Microchannel Pin-Fin Hybrid Heat Sink
Author
Guan, Xiaonan 1 ; Xie, Zhihui 1   VIAFID ORCID Logo  ; Gang, Nan 1 ; Xi, Kun 1 ; Lu, Zhuoqun 1   VIAFID ORCID Logo  ; Ge, Yanlin 2 

 College of Power Engineering, Naval University of Engineering, Wuhan 430033, China 
 Institute of Thermal Science and Power Engineering, Wuhan 430205, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China 
First page
2136
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756772923
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.