Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alzheimer’s disease (AD) seriously endangers the health and life of elderly individuals worldwide. However, despite all scientific efforts, at the moment there are no effective clinical treatment options for AD. In this work, the effect of the class I histone deacetylase inhibitor (HDACI) BG45 on synapse-related proteins was investigated in primary neurons from APP/PS1 transgenic mice. The results showed that BG45 can upregulate the expression of synaptotagmin-1 (SYT-1) and neurofilament light chain (NF-L) in primary neurons. In vivo, the APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with BG45 (30 mg/kg) daily for 12 days. Behavioral testing of BG45-treated APP/PS1 mice showed improvements in learning and memory. BG45 can alleviate damage to the dendritic spine and reduce the deposition of Aβ. Similar to the in vitro results, synapse-related proteins in the prefrontal cortex were increased after BG45 treatment. Proteomic analysis results highlighted the differences in the biological processes of energy metabolism and calmodulin regulation in APP/PS1 mice with or without BG45 treatment. Further verification demonstrated that the effect of BG45 on synapses and learning and memory may involve the CaMKII/ITPKA/Ca2+ pathway. These results suggest that class I HDACI BG45 might be a promising drug for the early clinical treatment of AD.

Details

Title
A Class I HDAC Inhibitor BG45 Alleviates Cognitive Impairment through the CaMKII/ITPKA/Ca2+ Signaling Pathway
Author
Liu, Jingyun; Zhang, Chenghong; Wang, Jiale; Huang, Yufei; Shen, Di; Hu, Yingqiu; Chu, Haiying; Yu, Xuebin; Zhang, Liyuan; Ma, Haiying  VIAFID ORCID Logo 
First page
1481
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756774663
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.