Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Research on nano- and micro-plastic particles (NMPPs) suggests their potential threat to human health. Some studies have even suggested genotoxic effects of NMPP exposure, such as micronuclei (MN) formation, while others found the opposite. To clarify the ability of NMPP to induce MN formation, we used non-malignant HaCaT keratinocytes and exposed these to a variety of polystyrene (PS) and poly methyl methacrylate (PMMA) particle types at different concentrations and three different sizes. Investigations were performed following acute (one day) and chronic exposure (five weeks) against cytotoxic (amino-modified NMPPs) and genotoxic (methyl methanesulfonate, MMS) positive controls. An optimized high-content imaging workflow was established strictly according to OECD guidelines for analysis. Algorithm-based object segmentation and MN identification led to computer-driven, unsupervised quantitative image analysis results on MN frequencies among the different conditions and thousands of cells per condition. This could only be realized using accutase, allowing for partial cell detachment for optimal identification of bi-nucleated cells. Cytotoxic amino-modified particles were not genotoxic; MMS was both. During acute and long-term studies, PS and PMMA particles were neither toxic nor increased MN formation, except for 1000 nm PS particles at the highest concentration of unphysiological 100 µg/mL. Interestingly, ROS formation was significantly decreased in this condition. Hence, most non-charged polymer particles were neither toxic nor genotoxic, while aminated particles were toxic but not genotoxic. Altogether, we present an optimized quantitative imaging workflow applied to a timely research question in environmental toxicity.

Details

Title
Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes
Author
Saadati, Fariba 1 ; Walison Augusto da Silva Brito 2 ; Emmert, Steffen 3   VIAFID ORCID Logo  ; Sander Bekeschus 4   VIAFID ORCID Logo 

 ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany 
 ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86057970, Brazil 
 Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany 
 ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany 
First page
4463
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756774693
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.