Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Antibodies that recognize cancer biomarkers, such as MUC16, can be used as vehicles to deliver contrast agents (imaging) or cytotoxic payloads (therapy) to the site of tumors. MUC16 is overexpressed in 80% of epithelial ovarian cancer (EOC) and 65% of pancreatic ductal adenocarcinomas (PDAC), where effective ‘theranostic’ probes are much needed. This work aims to develop fully human antibodies against MUC16 and evaluate them as potential immuno-PET imaging probes for detecting ovarian and pancreatic cancers. We developed a fully human monoclonal antibody, M16Ab, against MUC16 using phage display. M16Ab was conjugated with p-SCN-Bn-DFO and radiolabeled with 89Zr. 89Zr-DFO-M16Ab was then evaluated for binding specificity and affinity using flow cytometry. In vivo evaluation of 89Zr-DFO-M16Ab was performed by microPET/CT imaging at different time points at 24–120 h post injection (p.i.) and ex vivo biodistribution studies in mice bearing MUC16-expressing OVCAR3, SKOV3 (ovarian) and SW1990 (pancreatic) xenografts. 89Zr-DFO-M16Ab bound specifically to MUC16-expressing cancer cells with an EC50 of 10nM. 89Zr-DFO-M16Ab was stable in serum and showed specific uptake and retention in tumor xenografts even after 120 h p.i. (microPET/CT) with tumor-to-blood ratios > 43 for the SW1990 xenograft. Specific tumor uptake was observed for SW1990/OVCAR3 xenografts but not in MUC16-negative SKOV3 xenografts. Pharmacokinetic study shows a relatively short distribution (t1/2α) and elimination half-life (t1/2ß) of 4.4 h and 99 h, respectively. In summary, 89Zr-DFO-M16Ab is an effective non-invasive imaging probe for ovarian and pancreatic cancers and shows promise for further development of theranostic radiopharmaceuticals.

Details

Title
Engineering of a Fully Human Anti-MUC-16 Antibody and Evaluation as a PET Imaging Agent
Author
Babeker, Hanan 1   VIAFID ORCID Logo  ; Ketchemen, Jessica Pougoue 2 ; Arunkumar Annan Sudarsan 3 ; Andrahennadi, Samitha 3   VIAFID ORCID Logo  ; Anjong Florence Tikum 2 ; Anand Krishnan Nambisan 2 ; Humphrey Fonge 4   VIAFID ORCID Logo  ; Uppalapati, Maruti 3   VIAFID ORCID Logo 

 Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada 
 Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada 
 Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada 
 Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada; Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK S7N 0W8, Canada 
First page
2824
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756780042
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.