Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wheat is among the world’s most important agricultural crops, with winter wheat accounting for approximately 25.5% of the total agricultural crop in Lithuania. The unchangeable goal of crop production is to achieve good and economically beneficial crop yield, but such efforts are often based on conventional agrotechnological solutions, and excessive fertilization, which is uneconomical and negatively affects the soil, the environment, and human health. In order to produce a rich and high-quality cereal crop, scientists and farmers are increasingly focusing on managing the sowing and fertilization processes. Precision technologies based on spectrometric methods of soil and plant characterization can be used to influence the optimization of sowing and fertilizer application rates without compromising crop yield and quality. The aim of this study was to investigate the effect of site-specific seeding and variable-rate precision fertilization technologies on the growth, yield, and quality indicators of winter wheat. Experimental studies were carried out on a 22.4 ha field in two treatments: first (control)—SSS (site-specific seeding) + URF (uniform-rate fertilization); second—SSS + VRF (variable-rate precision fertilization) and 4 repetitions. Before the start of this study, the variability of the soil apparent electrical conductivity (ECa) was determined and the field was divided into five soil fertility zones (FZ-1, FZ-2, FZ-3, FZ-4, and FZ-5). Digital maps of potassium and phosphorus precision fertilization were created based on the soil samples. Optical nitrogen sensors were used for variable-rate supplementary nitrogen fertilization. The variable-rate precision fertilization method in individual soil fertility zones showed a higher (up to 6.74%) tillering coefficient, (up to 14.55%) grain yield, number of ears per square meter (up to 27.6%), grain number in the ear (up to 6.2%), and grain protein content (up to 12.56%), and a lower (up to 8.61%) 1000-grain weight on average than the conventional flat-rate fertilization. In addition, the use of the SSS + VRF method saved approximately 14 kg N ha−1 of fertilizer compared to the conventional SSS + URF method.

Details

Title
The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding
Author
Kazlauskas, Marius 1   VIAFID ORCID Logo  ; Šarauskis, Egidijus 1   VIAFID ORCID Logo  ; Lekavičienė, Kristina 1   VIAFID ORCID Logo  ; Naujokienė, Vilma 1   VIAFID ORCID Logo  ; Romaneckas, Kęstutis 2   VIAFID ORCID Logo  ; Bručienė, Indrė 1   VIAFID ORCID Logo  ; Buragienė, Sidona 1 ; Steponavičius, Dainius 1 

 Department of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania 
 Department of Agroecosystems and Soil Sciences, Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania 
First page
2717
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756780360
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.