Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The accurate detection of insulators is an important prerequisite for insulator fault diagnosis. To solve the problem of background interference and overlap caused by the axis-aligned bounding boxes in the tilting insulator detection tasks, we construct an improved detection architecture according to the scale and tilt features of the insulators from several perspectives, such as bounding box representation, loss function, and anchor box construction. A new orientation detection method for tilting insulators based on angle regression and priori constraints is put forward in this paper. Ablation tests and comparative validation tests were conducted on a self-built aerial insulator image dataset. The results show that the detection accuracy of our model was increased by 7.98% compared with that of the baseline, and the overall detection accuracy reached 82.33%. Moreover, the detection effect of our method was better than that of the YOLOv5 detection model and other orientation detection models. Our model provides a new idea for the accurate orientation detection of insulators.

Details

Title
A New Orientation Detection Method for Tilting Insulators Incorporating Angle Regression and Priori Constraints
Author
Zhao, Jianli; Liu, Liangshuai  VIAFID ORCID Logo  ; Chen, Ze; Ji, Yanpeng; Feng, Haiyan
First page
9773
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756781350
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.