Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, a noncontact fabric loop sensor based on magnetic-field-induced conductivity, which can simultaneously detect cardiac activity and respiration signals, was developed and the effects of the sensor’s shape and measurement position on the sensing performance were analyzed. Fifteen male subjects in their twenties wore sleeveless shirts equipped with various types of fabric loop sensors (spiky, extrusion, and spiral), and the cardiac activity and respiratory signals were measured twice at positions P2, P4, and P6. The measurements were verified by comparing them against the reference electrocardiogram (ECG) and respiratory signals measured using BIOPAC® (MP150, ECG100B, RSP100C). The waveforms of the raw signal measured by the fabric loop sensor were filtered with a bandpass filter (1–20 Hz) and qualitatively compared with the ECG signal obtained from the Ag/AgCI electrode. Notwithstanding a slight difference in performance, the three fabric sensors could simultaneously detect cardiac activity and respiration signals at all measurement positions. In addition, it was verified through statistical analysis that the highest-quality signal was obtained at the measurement position of P4 or P6 using the spiral loop sensor.

Details

Title
Wearable Fabric Loop Sensor Based on Magnetic-Field-Induced Conductivity for Simultaneous Detection of Cardiac Activity and Respiration Signals
Author
Hyun-Seung Cho 1   VIAFID ORCID Logo  ; Jin-Hee, Yang 1 ; Lee, Sang-Yeob 2 ; Jeong-Whan, Lee 2 ; Joo-Hyeon, Lee 3 

 Institute of Symbiotic Life-TECH, Yonsei University, Seoul 03722, Republic of Korea 
 Department of ICT Convergence, Engineering, Konkuk University, Seoul 27478, Republic of Korea 
 Department of Clothing & Textiles, Yonsei University, Seoul 03722, Republic of Korea 
First page
9884
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756782129
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.