Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.

Details

Title
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis
Author
Pontes, Adriano P 1   VIAFID ORCID Logo  ; Welting, Tim J M 2 ; Rip, Jaap 1   VIAFID ORCID Logo  ; Creemers, Laura B 3   VIAFID ORCID Logo 

 20Med Therapeutics B.V., 2333 BD Leiden, The Netherlands 
 Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands 
 Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands 
First page
2639
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756782522
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.