Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Viruses are strict intracellular parasites that rely on the proteins encoded in their genomes for the effective manipulation of the infected cell that ultimately enables a successful infection. Viral proteins have to be produced during the cell invasion and takeover in sufficient amounts and in a timely manner. Silencing suppressor proteins evolved by plant viruses can boost the production of viral proteins; although, additional mechanisms for the regulation of viral protein production likely exist. The strongest silencing suppressor encoded by the geminivirus tomato yellow leaf curl virus (TYLCV) is V2: V2 suppresses both post-transcriptional and transcriptional gene silencing (PTGS and TGS), activities that are associated with its localization in punctate cytoplasmic structures and in the nucleus, respectively. However, V2 has been previously described to largely localize in the endoplasmic reticulum (ER), although the biological relevance of this distribution remains mysterious. Here, we confirm the association of V2 to the ER in Nicotiana benthamiana and assess the silencing suppression activity-independent impact of V2 on protein accumulation. Our results indicate that V2 has no obvious influence on the localization of ER-synthesized receptor-like kinases (RLKs) or ER quality control (ERQC)/ER-associated degradation (ERAD), but dramatically enhances the accumulation of the viral C4 protein, which is co-translationally myristoylated, possibly in proximity to the ER. By using the previously described V2C84S/86S mutant, in which the silencing suppression activity is abolished, we uncouple RNA silencing from the observed effect. Therefore, this work uncovers a novel function of V2, independent of its capacity to suppress silencing, in the promotion of the accumulation of another crucial viral protein.

Details

Title
The V2 Protein from the Geminivirus Tomato Yellow Leaf Curl Virus Largely Associates to the Endoplasmic Reticulum and Promotes the Accumulation of the Viral C4 Protein in a Silencing Suppression-Independent Manner
Author
Wang, Liping 1   VIAFID ORCID Logo  ; Fan, Pengfei 1 ; Jimenez-Gongora, Tamara 1   VIAFID ORCID Logo  ; Zhang, Dan 1 ; Ding, Xue 1   VIAFID ORCID Logo  ; Medina-Puche, Laura 2   VIAFID ORCID Logo  ; Lozano-Durán, Rosa 2   VIAFID ORCID Logo 

 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China 
 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany 
First page
2804
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756784214
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.