Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Different materials such as aluminum salts and bacterial peptidoglycan are considered immunogenic enhancers. Lactobacillus acidophilus (LA), a Gram-positive bacterium also known as a probiotic, is considered safe, acts as an immune enhancer when purified to form a pure peptidoglycan particle and is a possible candidate for a vaccine adjuvant. LA particles (LAPs) treated with high-pressure homogenization (HPH) with the addition of trehalose and emulsifiers had an average diameter of 179 nm. A five-fold dosage of LAPs treated with HPH and additives can induce a higher antibody titer response compared with commercial adjuvants in murine species. In comparison with ISA70, LAPs can stimulate an even antibody titer response but this decreased more quicky after a few weeks in chickens. Different formulation combinations of carbomer and LAPs induce a similar antibody response to commercial ISA70 with no acute toxicity, suggesting that LAPs are a potent vaccine adjuvant.

Abstract

We evaluated Lactobacillus acidophilus (LA) for adjuvant application in animal vaccines. LA particles (LAPs) are made by treating LA with purification processes and high-pressure homogenization (HPH). We found that LAPs treated with HPH with trehalose and emulsifiers had an average particle size of 179 nm, considerably smaller than LAPs without additives. First, we evaluated the adjuvanticity of LAPs using a murine model with ovalbumin antigens, revealing that LAPs, especially in a five-fold concentration, could induce a considerable antibody response compared with other current adjuvants. In poultry vaccination tests using inactivated Newcastle disease virus, LAPs alone could induce a similar antibody response compared to commercial water-in-oil (W/O) adjuvant ISA70, a commercial adjuvant, at weeks 4 and 6; however, they declined faster than ISA70 at weeks 8 and 10. LAPs added to conventional adjuvant materials, such as mineral oil-based O/W emulsions, showed similar adjuvanticity to ISA70. LA-H5-C, composed of carbomer, emulsifiers and trehalose showed no significant body weight change in acute toxicity compared to other adjuvants including ISA70, making formulated LAPs a potential candidate for use as a veterinary vaccine adjuvant.

Details

Title
Particulate Cell Wall Materials of Lactobacillus acidophilus as Vaccine Adjuvant
Author
Shu-Ching, Lin 1 ; Chang, Pu-Chieh 1 ; Chien-Hung, Lin 2 ; Hong-Jen, Liang 3 ; Huang, Chih-Hung 1 

 Department of Chemical Engineering & Biotechnology, Institute of Chemical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan 
 Country Best Biotech Co., Ltd., Taipei 100411, Taiwan 
 Department of Food Science, Yuanpei University, Hsinchu 30015, Taiwan 
First page
698
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23067381
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756784742
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.