Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Waste to energy processes from anaerobic digestion (WtE-AD) from cattle manure (CM) have low CH4 yields due to CM’s structural composition. The search for alternatives to increase the energy yields of these processes must consider the optimization of operating parameters within a framework of mitigating the environmental footprint. The goal of this paper is to provide a statistical optimization strategy based on experimental designs to improve CH4 yields and reduce the environmental profile of CM valorization through a WtE-AD process. Biochemical methane potential tests were conducted to determine the energetic and environmental effects that alkaline pretreatments, different AD temperatures, and co-digestion formulations with fruit and vegetable waste (FVW) have on the WtE-AD process from CM. The evaluation was conducted following a life cycle assessment approach through energy balances. The results indicate that the highest CH4 yield (384.3 mL CH4 g VS−1) and the lowest environmental impact (−0.06 kg CO2 eq kWh−1 of electricity production) were achieved with the co-digestion of CM with FVW 1:1, pretreatment with 10 g NaOH 100 g−1 of VS of CM, and a temperature of 45 °C. It was found that the CM pretreatment with NaOH substantially increases the energy profile of the WtE-AD process without compromising the environmental impact since greenhouse gas emissions in chemical production are negligible.

Details

Title
Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions
Author
Albalate-Ramírez, Alonso 1 ; Alcalá-Rodríguez, Mónica María 2 ; Luis Ramiro Miramontes-Martínez 1   VIAFID ORCID Logo  ; Padilla-Rivera, Alejandro 3   VIAFID ORCID Logo  ; Estrada-Baltazar, Alejandro 4 ; López-Hernández, Brenda Nelly 1 ; Rivas-García, Pasiano 1 

 Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza 64451, Nuevo Leon, Mexico; Centro de Investigacion en Biotecnologia y Nanotecnologia, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Parque de Investigacion e Innovacion Tecnologica, km 10 Highway to the International Airport Mariano Escobedo, Apodaca 66629, Nuevo Leon, Mexico 
 Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza 64451, Nuevo Leon, Mexico 
 School of Architecture, Planning, and Landscape, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada 
 Departamento de Ingenieria Quimica, Instituto Tecnologico de Celaya, Av. Tecnologico y A. Garcia Cubas S/N, Celaya 38010, Guanajuato, Mexico 
First page
16945
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756819760
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.