It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose hallmarks are social deficits, language impairment, repetitive behaviors, and sensory alterations. It has been reported that patients with ASD show differential activity in cortical regions, for instance, increased neuronal activity in visual processing brain areas and atypical visual perception compared with healthy subjects. The causes of these alterations remain unclear, although many studies demonstrate that ASD has a strong genetic correlation. An example is Phelan–McDermid syndrome, caused by a deletion of the Shank3 gene in one allele of chromosome 22. However, the neuronal consequences relating to the haploinsufficiency of Shank3 in the brain remain unknown. Given that sensory abnormalities are often present along with the core symptoms of ASD, our goal was to study the tuning properties of the primary visual cortex to orientation and direction in awake, head-fixed Shank3+/− mice. We recorded neural activity in vivo in response to visual gratings in the primary visual cortex from a mouse model of ASD (Shank3+/− mice) using the genetically encoded calcium indicator GCaMP6f, imaged with a two-photon microscope through a cranial window. We found that Shank3+/− mice showed a higher proportion of neurons responsive to drifting gratings stimuli than wild-type mice. Shank3+/− mice also show increased responses to some specific stimuli. Furthermore, analyzing the distributions of neurons for the tuning width, we found that Shank3+/− mice have narrower tuning widths, which was corroborated by analyzing the orientation selectivity. Regarding this, Shank3+/− mice have a higher proportion of selective neurons, specifically neurons showing increased selectivity to orientation but not direction. Thus, the haploinsufficiency of Shank3 modified the neuronal response of the primary visual cortex.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Universidad Nacional Autónoma de México, División de Neurociencias, Instituto de Fisiología Celular, Mexico City, Mexico (GRID:grid.9486.3) (ISNI:0000 0001 2159 0001)