Abstract

Covid-19 has been marked as a pandemic world-wide caused by the SARS-CoV-2 virus. Different studies are being conducted with a view to preventing and lessening the infections caused by covid-19. In future, many other wind-borne diseases may also appear and even emerge as “pandemic”. To prevent this, various measures should be an integral part of our daily life such as wearing face masks. It is tough to manually ensure individuals safety. The goal of this paper is to automate the process of contactless surveillance so that substantial prevention can be ensured against all kinds of wind-borne diseases. For automating the process, real time analysis and object detection is a must for which deep learning is the most efficient approach. In this paper, a deep learning model is used to check if a person takes any preventive measures. In our experimental analysis, we considered real time face mask detection as a preventive measure. We proposed a new face mask detection dataset. The accuracy of detecting a face mask along with the identity of a person achieved accuracy of 99.5%. The proposed model decreases time consumption as no human intervention is needed to check an individual person. This model helps to decrease infection risk by using a contactless automation system.

Details

Title
Contactless Surveillance for Preventing Wind-Borne Disease using Deep Learning Approach
Author
Md Mania Ahmed Joy; Israt Jaben Bushra; Ayshee, Razoana; Hasan, Samira; Hassan, Samia Binta; Ali, Md Sawkat; Farrok, Omar; Mohammad Rifat Ahmmad Rashid; Islam, Maheen
Publication year
2022
Publication date
2022
Publisher
Science and Information (SAI) Organization Limited
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2758768682
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.