Full text

Turn on search term navigation

© 2022 Lesack et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The accurate characterization of structural variation is crucial for our understanding of how large chromosomal alterations affect phenotypic differences and contribute to genome evolution. Whole-genome sequencing is a popular approach for identifying structural variants, but the accuracy of popular tools remains unclear due to the limitations of existing benchmarks. Moreover, the performance of these tools for predicting variants in non-human genomes is less certain, as most tools were developed and benchmarked using data from the human genome. To evaluate the use of long-read data for the validation of short-read structural variant calls, the agreement between predictions from a short-read ensemble learning method and long-read tools were compared using real and simulated data from Caenorhabditis elegans. The results obtained from simulated data indicate that the best performing tool is contingent on the type and size of the variant, as well as the sequencing depth of coverage. These results also highlight the need for reference datasets generated from real data that can be used as ‘ground truth’ in benchmarks.

Details

Title
Different structural variant prediction tools yield considerably different results in Caenorhabditis elegans
Author
Lesack, Kyle  VIAFID ORCID Logo  ; Mariene, Grace M; Andersen, Erik C  VIAFID ORCID Logo  ; Wasmuth, James D  VIAFID ORCID Logo 
First page
e0278424
Section
Research Article
Publication year
2022
Publication date
Dec 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2759699715
Copyright
© 2022 Lesack et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.