It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Measuring and interpreting errors in behavioral tasks is critical for understanding cognition. Conventional wisdom assumes that encoding/decoding errors for continuous variables in behavioral tasks should naturally have Gaussian distributions, so that deviations from normality in the empirical data indicate the presence of more complex sources of noise. This line of reasoning has been central for prior research on working memory. Here we re-assess this assumption, and find that even in ideal observer models with Gaussian encoding noise, the error distribution is generally non-Gaussian, contrary to the commonly held belief. Critically, we find that the shape of the error distribution is determined by the geometrical structure of the encoding manifold via a simple rule. In the case of a high-dimensional geometry, the error distributions naturally exhibit flat tails. Using this novel insight, we apply our theory to visual short-term memory tasks, and find that it can account for a large array of experimental data with only two free parameters. Our results call attention to the geometry of the representation as a critically important, yet underappreciated factor in determining the character of errors in human behavior.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer