Full text

Turn on search term navigation

© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We consider the problem of open-goal planning for robotic cloth manipulation. Core of our system is a neural network trained as a forward model of cloth behaviour under manipulation, with planning performed through backpropagation. We introduce a neural network-based routine for estimating mesh representations from voxel input, and perform planning in mesh format internally. We address the problem of planning with incomplete domain knowledge by introducing an explicit epistemic uncertainty penalty, using prediction divergence between two instances of the forward model network as a proxy of epistemic uncertainty. This allows us to avoid plans with high epistemic uncertainty during planning. Finally, we introduce logic for handling restriction of grasp points to a discrete set of candidates, in order to accommodate graspability constraints imposed by robotic hardware. We evaluate the system’s mesh estimation, prediction, and planning ability on simulated cloth for sequences of one to three manipulations. Comparative experiments confirm that planning on basis of estimated meshes improves accuracy compared to voxel-based planning, and that epistemic uncertainty avoidance improves performance under conditions of incomplete domain knowledge. Planning time cost is a few seconds. We additionally present qualitative results on robot hardware.

Details

Title
Cloth manipulation planning on basis of mesh representations with incomplete domain knowledge and voxel-to-mesh estimation
Author
Arnold, Solvi; Tanaka, Daisuke; Yamazaki, Kimitoshi
Section
ORIGINAL RESEARCH article
Publication year
2023
Publication date
Jan 5, 2023
Publisher
Frontiers Research Foundation
e-ISSN
16625218
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2760969598
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.