Abstract

The unsupervised search for overdense regions in high-dimensional feature spaces, where locally high population densities may be associated with anomalous contaminations to an otherwise more uniform population, is of relevance to applications ranging from fundamental research to industrial use cases. Motivated by the specific needs of searches for new phenomena in particle collisions, we propose a novel approach that targets signals of interest populating compact regions of the feature space. The method consists in a systematic scan of subspaces of a standardized copula of the feature space, where the minimum p-value of a hypothesis test of local uniformity is sought by greedy descent. We characterize the performance of the proposed algorithm and show its effectiveness in several experimental situations.

Details

Title
RanBox: anomaly detection in the copula space
Author
Dorigo, Tommaso 1 ; Fumanelli, Martina 2 ; Maccani, Chiara 3 ; Mojsovska, Marija 3 ; Strong, Giles C. 3 ; Scarpa, Bruno 2 

 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy (GRID:grid.470212.2); Universal Scientific Education and Research Network (USERN), Tehran, Iran (GRID:grid.510410.1) (ISNI:0000 0004 8010 4431) 
 Università di Padova, Dipartimento di Scienze Statistiche, Padova, Italy (GRID:grid.5608.b) (ISNI:0000 0004 1757 3470) 
 Università di Padova, Dipartimento di Fisica e Astronomia “G.Galilei”, Padova, Italy (GRID:grid.5608.b) (ISNI:0000 0004 1757 3470) 
Pages
8
Publication year
2023
Publication date
Jan 2023
Publisher
Springer Nature B.V.
e-ISSN
10298479
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2760992353
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.