Abstract

Mechanosensation is crucial for cells to sense and respond to mechanical signals within their local environment. While adaptation allows a sensor to be conditioned by stimuli within the environment and enables its operation in a wide range of stimuli intensities, the mechanisms behind adaptation remain controversial in even the most extensively studied mechanosensor, bacterial mechanosensitive channels. Primary cilia are ubiquitous sensory organelles. They have emerged as mechanosensors across diverse tissues, including kidney, liver and the embryonic node, and deflect with mechanical stimuli. Here, we show that both mechanical and chemical stimuli can alter cilium stiffness. We found that exposure to flow stiffens the cilium, which deflects less in response to subsequent exposures to flow. We also found that through a process involving acetylation, the cell can biochemically regulate cilium stiffness. Finally, we show that this altered stiffness directly affects the responsiveness of the cell to mechanical signals. These results demonstrate a potential mechanism through which the cell can regulate its mechanosensing apparatus.

Details

Title
The primary cilium is a self-adaptable, integrating nexus for mechanical stimuli and cellular signaling
Author
Nguyen, An M; Y.-N. Young; Jacobs, Christopher R
Pages
1733-1738
Section
RESEARCH ARTICLES
Publication year
2015
Publication date
2015
e-ISSN
20466390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761005969
Copyright
© 2015. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.