Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Epigenetic modifications, such as DNA methylation and histone modification, have been found to alter in various cancer types. These modifications lead to uncontrolled cellular proliferation, evasion from apoptosis, and metastasis. Deregulation in epigenetic pathways often results in the suppression of tumor-suppression genes or activation of oncogenes in cancers. Inhibitors targeting deregulated enzymes can restore balance by reactivating altered pathways. Several inhibitors that target DNA methylation and histone modifications are currently being used in clinics and have shown promising results in cancer therapeutics.

Abstract

The three-dimensional architecture of genomes is complex. It is organized as fibers, loops, and domains that form high-order structures. By using different chromosome conformation techniques, the complex relationship between transcription and genome organization in the three-dimensional organization of genomes has been deciphered. Epigenetic changes, such as DNA methylation and histone modification, are the hallmark of cancers. Tumor initiation, progression, and metastasis are linked to these epigenetic modifications. Epigenetic inhibitors can reverse these altered modifications. A number of epigenetic inhibitors have been approved by FDA that target DNA methylation and histone modification. This review discusses the techniques involved in studying the three-dimensional organization of genomes, DNA methylation and histone modification, epigenetic deregulation in cancer, and epigenetic therapies targeting the tumor.

Details

Title
Epimutations and Their Effect on Chromatin Organization: Exciting Avenues for Cancer Treatment
Author
Asad Mohammad; Jha, Sudhakar  VIAFID ORCID Logo 
First page
215
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761097589
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.