Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although macrophage infiltration has been proven to increase calcified artery media in chronic kidney disease (CKD) patients, the mechanism by which macrophages are involved in vascular calcification (VC) progression remains unclear. Taking advantage of miRNA-seq, RNA-seq, dual-luciferase reporter assay, qRT-PCR, and arteries from CKD patients as well as CKD mouse models, we identified that high-phosphate-stimulated macrophage-derived exosomes (Mexo-P) suppressed let-7b-5p expression in VSMCs, which further upregulated TGFBR1. Moreover, gain-and-loss-of-function assays were used to determine the regulatory effects and downstream mechanism of let-7b-5p and TGFBR1 on VC. Mechanically, Mexo-P induced VSMC TGFBR1 upregulation by suppressing let-7b-5p, which further amplifies SMAD3/RUNX2 signaling and thereby contributes to VC. Our findings indicate that macrophage-derived exosomes promote CKD-associated VC through the let-7b-5p/TGFBR1 axis in high-phosphate conditions. Our study provides insight into macrophages associated with VC, which might be potential therapeutical targets for VC.

Details

Title
High-Phosphate-Stimulated Macrophage-Derived Exosomes Promote Vascular Calcification via let-7b-5p/TGFBR1 Axis in Chronic Kidney Disease
Author
Li, Qing  VIAFID ORCID Logo  ; Zhang, Cailin; Shi, Jia; Yang, Yi; Xue Xing; Wang, Yanan; Zhan, Xiaona; Wang, Le; Xu, Gang; He, Fan  VIAFID ORCID Logo 
First page
161
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761098492
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.