Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Mobile olfaction is one of the applications of mobile robots. Metal oxide sensors (MOX) are mobile robots’ most popular gas sensors. However, the sensor has drawbacks, such as high-power consumption, high operating temperature, and long recovery time. This research compares a reduced graphene oxide (RGO) sensor with the traditionally used MOX in a mobile robot. The method uses a map created from simultaneous localization and mapping (SLAM) combined with gas distribution mapping (GDM) to draw the gas distribution in the map and locate the gas source. RGO and MOX are tested in the lab for their response to 100 and 300 ppm ethanol. Both sensors’ response and recovery times show that RGO resulted in 56% and 54% faster response times, with 33% and 57% shorter recovery times than MOX. In the experiment, one gas source, 95% ethanol solution, is placed in the lab, and the mobile robot runs through the map in 7 min and 12 min after the source is set, with five repetitions. The results show the average distance error of the predicted source from the actual location was 19.52 cm and 30.28 cm using MOX and 25.24 cm and 30.60 cm using the RGO gas sensor for the 7th and 12th min trials, respectively. The errors show that the predicted gas source location based on MOX is 1.0% (12th min), much closer to the actual site than that predicted with RGO. However, RGO also shows a larger gas sensing area than MOX by 0.35–8.33% based on the binary image of the SLAM-GDM map, which indicates that RGO is much more sensitive than MOX in the trial run. Regarding power consumption, RGO consumes an average of 294.605 mW, 56.33% less than MOX, with an average consumption of 674.565 mW. The experiment shows that RGO can perform as well as MOX in mobile olfaction applications but with lower power consumption and operating temperature.

Details

Title
Mobile Robot Gas Source Localization Using SLAM-GDM with a Graphene-Based Gas Sensor
Author
Wan Abdul Syaqur Norzam 1 ; Huzein Fahmi Hawari 1   VIAFID ORCID Logo  ; Kamarudin, Kamarulzaman 2   VIAFID ORCID Logo  ; Zaffry Hadi Mohd Juffry 2 ; Nurul Athirah Abu Hussein 1 ; Gupta, Monika 1   VIAFID ORCID Logo  ; Abdullah, Abdulnasser Nabil 2 

 Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia 
 Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia 
First page
171
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761112441
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.