Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Acetic acid is the primary by-product generated from ethanol production by Fusarium oxysporum using glucose or xylose as a substrate. Aldehyde dehydrogenase (ALDH) is the critical enzyme in acetic acid metabolism. To decrease acetic acid yield in ethanol production, the 1509 bp DNA of aldh, encoding a 502 amino acid protein with a calculated molecular mass of 54.33 kDa and an isoelectric point of 6.21, was cloned from F. oxysporum. Sequence analysis confirmed that the screened proteins belonged to the ALDH family. A knockout vector, ∆aldh, containing positive (hygromycin resistance gene) and negative (thymidine kinase gene from the herpes simplex virus) selectable markers, was constructed. Ethanol production by the mutant (cs28pCAM-Pstal-∆aldh) in glucose- and xylose-containing media was 0.46 and 0.39 g/g, respectively, and these yields were 16.93% and 34.63% higher than those by the wild-type strain (0.393 and 0.289 g/g). Furthermore, the acetic acid yield of the mutant was 3.50 and 3.01 g/L, respectively, showing a 23.10% and 39.55% decrease compared with the wild-type strain (4.308 and 4.196 g/L). The biomass of the mutant (4.05 and 4.52 g/L) was lower than that of the wild-type strain (4.71 and 5.97 g/L). These results demonstrated the potential use of the genetically stable mutant for industrial bioethanol production.

Details

Title
Knockout of the Aldehyde Dehydrogenase Gene in Fusarium oxysporum for Enhanced Ethanol Yield
Author
Fan, Jinxia 1 ; Huang, Xiaomei 2 ; Zheng, Guoxiang 1 ; Liu, Changyu 1 ; Wang, Ming 1   VIAFID ORCID Logo  ; Sun, Yong 1 ; Yang, Qian 3 

 College of Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China 
 Department of Bioengineering, Heilongjiang Vocational College of Agricultural Technology, Jiamusi 154007, China 
 Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 
First page
427
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761178227
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.